1	Geochemistry of phosphorus and the behavior of apatite during crustal anatexis:
2	insights from melt inclusions and nanogranitoids
3	

 Chris Yakymchuk
 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

Antonio Acosta-Vigil Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Armilla, Granada, Spain, 18100

12

8

9

10

11

Abstract

13 The solubility of apatite in anatectic melt plays an important role in controlling the trace element 14 compositions and isotopic signatures of granites. The compositions of glassy melt inclusions and 15 nanogranitoids in migmatites and granulites are compared with the results of experimental 16 studies of apatite solubility in order to evaluate the factors that influence apatite behavior during 17 prograde suprasolidus metamorphism and investigate the mechanisms of anatexis in the 18 continental crust. The concentration of phosphorus in glassy melt inclusions and rehomogenized 19 nanogranitoids suggests a strong control of melt aluminosity on apatite solubility in 20 peraluminous granites, which is consistent with existing experimental studies. However, 21 measured concentrations of phosphorus in melt inclusions and nanogranitoids are generally 22 inconsistent with the concentrations expected from apatite solubility expressions based on 23 experimental studies. Using currently available nanogranitoids and glassy melt inclusion 24 compositions, we identify two main groups of inclusions: those trapped at lower temperature and showing the highest measured phosphorus concentrations, and melt inclusions trapped at the 25 26 highest temperatures having the lowest phosphorus concentrations. The strong inconsistency 27 between measured and experimentally predicted P concentrations in higher temperature samples 28 may relate to apatite exhaustion during the production of large amounts of peraluminous melt at

29	high temperatures. The inconsistency between measured and predicted phosphorus
30	concentrations for the lower-temperature inclusions, however, cannot be explained by problems
31	with the electron microprobe analyses of rehomogenized nanogranitoids and glassy melt
32	inclusions, sequestration of phosphorus in major minerals and/or monazite, shielding or
33	exhaustion of apatite during high-temperature metamorphism, and apatite-melt disequilibrium.
34	The unsuitability of the currently available solubility equations is probably the main cause for the
35	discrepancy between the measured concentrations of phosphorus in nanogranites and those
36	predicted from current apatite solubility expressions. Syn-entrapment processes such as the
37	generation of diffusive boundary layers at the mineral-melt interface and adsorption of elements
38	onto the surface of growing crystals may be responsible for concentrations of P in nanogranites
39	and glassy melt inclusions that are higher than those predicted in apatite-saturated melt.
40	
41	Key words: Apatite, phosphorus, partial melting, migmatite, granulite, melt inclusion,
42	nanogranite
43	Introduction
44	The behavior of apatite during metamorphism is important for geochemical studies of granites
45	(e.g. Ayres and Harris 1997; Zeng et al. 2005; Farina and Stevens 2011) and geochronology of
46	metamorphic and metasomatic processes (e.g. Corfu and Stone 1998; Engi 2017; Kirkland et al.
47	2018; Bosse and Villa 2019). Because apatite hosts most of the P in metapelites and migmatites
48	(London et al. 1999; Yakymchuk et al. 2018) it also influences the behavior of metamorphic
49	monazite (Johnson et al. 2015; Yakymchuk 2017) and plays a critical role controlling the rare
50	earth element budgets of magmas that ultimately produce mineral deposits (e.g. Bea et al. 1992).

51 Therefore, understanding the behavior of apatite during anatexis has many implications for 52 igneous, metamorphic and hydrothermal systems.

53 Studies of the chemical differentiation of the continental crust and petrogenesis of 54 migmatites and granulites rely on the composition of primary melt derived from anatexis – these 55 melt compositions are the starting point for such studies (Sawyer 2008). The compositions of 56 primary anatectic melts have been determined from experiments, the compositions of leucosome in migmatites, phase equilibria modeling, and from the analysis of glassy melt inclusions and 57 58 nanogranitoid inclusions in peritectic minerals from migmatites and granulites (Cesare et al. 59 1997, 2009, 2015; Bartoli et al. 2016; Acosta-Vigil et al. 2010, 2017). Experimental studies 60 provide fundamental benchmarks of primary melt compositions, but they are generally time 61 consuming and the applicability of the relatively simple chemical systems to large and more 62 complex natural systems is not always clear (White et al. 2011). Leucosomes in migmatites can 63 represent *in situ* products of anatexis, but they rarely record primary melt compositions because 64 they are prone to compositional variation during melt extraction and cooling of the system, such 65 as fractional crystallization and processes associated with melt-residuum separation (e.g. Sawyer 66 1987; Brown et al. 2016; Yakymchuk et al. 2019). Phase equilibria modeling can allow many 67 scenarios to be tested relatively quickly, but thermodynamic datasets are commonly extrapolated 68 from the foundational experimental data using natural phase assemblages, and this modeling can 69 have difficulty reproducing natural parageneses (e.g. Pattison et al. 2011; Bartoli 2017; Forshaw 70 et al. 2019). In addition, modeling that includes phosphate minerals is very limited (e.g. Kelsey 71 et al. 2008; Yakymchuk et al. 2017; Yakymchuk 2017; Yakymchuk and Brown 2019; Shrestha et 72 al. 2019), and activity-composition models that include phosphorus are in their infancy (e.g. 73 Spear 2010; Spear and Pyle 2010).

Revision 1

74	There is an increasing number of studies on glassy melt inclusions and rehomogenized
75	nanogranitoid inclusions present in peritectic minerals from migmatites and granulites, covering
76	various bulk rock compositions and host minerals (e.g. Cesare et al. 2015; Bartoli et al. 2016).
77	Melt inclusions trapped by peritectic minerals generated during crustal anatexis represent, by
78	definition, samples of the primary melts (Cesare et al. 2011, 2015; Bartoli et al. 2014). However,
79	the results of these studies have not been yet applied to evaluating the geochemistry of
80	phosphorus during anatexis, which has implications for the behavior and role of apatite and
81	monazite in peraluminous granites and metasedimentary migmatites. Considering that many of
82	the reported melt inclusions and nanogranitoids are spatially associated with apatite, (Cesare
83	2008; Fererro et al. 2012; Fererro et al. 2015) and that apatite itself does sometimes host tubular
84	melt inclusions (Cesare et al. 2011), the composition of glassy melt inclusions and
85	rehomogenized nanogranitoid inclusions can be used to test current experimental models of
86	apatite solubility and investigate the mechanisms of anatexis in crustal rocks.
87	Here, we use the large dataset of the previously published glassy melt inclusions and
88	nanogranitoids compositions (~580 analyses; Bartoli et al. 2016) to test the validity of the
89	predictions of laboratory experiments on the solubility of apatite, and to investigate the
90	controlling factors on phosphorus solubility in apatite-saturated melts. We identify some
91	discrepancies between the melt inclusion and nanogranitoid dataset with experimentally-derived
92	solubility equations for a patite in granitic $(s.l.)$ melt, and discuss implications for the geological
93	significance of melt inclusion compositions, the suprasolidus behavior of apatite, mechanisms of
94	crustal anatexis, and linking granites to their source rocks.

95

96

Apatite solubility

97	The concentration of phosphorus in anatectic melt is controlled by the growth and breakdown of
98	phosphate minerals, and, to a lesser extent, the behavior of phosphorus-rich silicate minerals.
99	The dominant repository of phosphorus in migmatites is apatite, which is expected to exert a
100	first-order control on the phosphorus concentration of anatectic melt and the geochemistry of P
101	during crustal anatexis (e.g. Spear and Pyle 2002). Experimental studies have concluded that
102	apatite solubility in melt is controlled by chemical and physical factors, including: temperature,
103	pressure, melt composition and kinetics (Watson 1979; Watson and Green 1981; Piccoli and
104	Candela 2002). Apatite solubility does not appear to be sensitive to H ₂ O content, whereas
105	monazite—a significant repository of phosphorus in high-grade aluminous metamorphic rocks—
106	is more sensitive (Stepanov et al. 2012). Several studies have examined these factors for apatite
107	solubility (e.g. Harrison and Watson 1984; Bea et al. 1992; Pichavant et al. 1992; Wolf and
108	London 1994; Toplis and Dingwell 1996; London et al. 1999).

Harrison and Watson (1984; HW84) used partial melting experiments to show that the
solubility of apatite is related to temperature and the SiO₂ concentration of melt by the following
relationship:

112
$$lnD_{P}^{apatite/melt} = \left[\frac{(8400 + ((SiO_{2} - 0.5)2.64 \times 10^{4}))}{T}\right] - [3.1 + 12.4(SiO_{2} - 0.5))]$$
 (1)

where SiO_2 is the weight fraction in the melt and *T* is in Kelvin. This relationship is predicted to be valid for melt with SiO_2 concentrations between 45% and 75 wt.%, for 0% to 10% wt.% H₂O

and the range of pressures expected in the crust (Harrison and Watson 1984).

Pichavant et al. (1992; P92) demonstrated that apatite solubility increases for
peraluminous melt compositions compared with metaluminous and peralkaline melts. These
authors derived the following equations for P₂O₅ solubility in peraluminous melt:

119
$$P_2 O_5^{PMR} = P_2 O_5^{HW} + P_2 O_5^{PER}$$
(2)

120
$$P_2 O_5^{PER} = \left(\frac{A}{CNK} - 1\right) \exp\left(\frac{\alpha}{T} + \beta SiO2 + \gamma\right)$$
(3)

121 where, α , β , and γ are constants, *T* is in Kelvin, SiO₂ is the weight fraction of silica in the melt 122 and $P_2O_5^{HW}$ is the concentration of P₂O₅ from the HW84 expression.

Bea et al. (1992; B92) produced a model based on the experimental data of Holtz and Johannes (1991) and Harrison and Watson (1984) that includes an expression for the aluminosity of the melt as follows:

$$P_2 O_5^{corrected} = P_2 O_5^{HW} + e^{factor}$$
(4)

127
$$e^{factor} = (ASI - 1) \times (\frac{6420}{T})$$
 (5)

128 where *T* is in Kelvin and ASI (aluminum saturation index) is defined as molar Al_2O_3 / [Na₂O + 129 K₂O + CaO].

Wolf and London (1994; WL94) derived a simple linear equation that relates the
aluminum saturation index of the melt to the P₂O₅ concentration of melt in chemical equilibrium
with apatite:

133 $P_2 O_{5 (wt.\%)} = -3.4 + 3.1 \times ASI$ (6)

134 However, their experiments were restricted to low pressure (2 kbar) and peraluminous melt

135 compositions (ASI > 1.1), which may be applicable for partial melting of aluminous

136 metasedimentary rocks but not for intermediate to basic rocks.

Tollari et al. (2006) combined experimental results with published data to demonstrate an
important control of CaO on the solubility of phosphorus in melt:

139
$$M_{P205}^{liq-sat} = \exp\left[T\left(\frac{-0.8579}{139.00 - M_{SiO2}^{liq}} + 0.0165\right) - 3.333\ln(M_{CaO}^{liq})\right]$$
(7)

140 where *M* is the molar percentage of oxides and *T* is in Kelvin. This model can be applied to wt.% 141 concentrations using the following conversion factors from Tollari et al. (2006): $SiO_{2 \text{ (mol%)}} = 1.11$

142	$x \operatorname{SiO}_{2 \text{ (wt%)}}$; CaO (mol%)= 1.18 x CaO (wt%); P ₂ O _{5 (mol%)} = 0.47 x P ₂ O _{5 (wt%)} . However, the effect of
143	the CaO concentration of the melt on P ₂ O ₅ saturation is relatively minor for granitic systems.
144	Considering that the analyzed nanogranitoids are mostly granitic (sensu stricto), this expression
145	is excluded from the analysis below.

- 146
- 147

Data handling and methodology

148 All of the data used in this study is from the compilation of Bartoli et al. (2016), which includes 149 measurements of rehomogenized nanogranitoid and glassy melt inclusion compositions from

150 various rock types (mostly metapelites and, to lesser extent, metaluminous to moderately

151 peraluminous quartzofeldspathic rocks) from several migmatite terranes and xenoliths in

volcanic rocks (Cesare et al. 2003, 2007, 2009; Acosta-Vigil et al. 2007; Bartoli et al. 2013a, b,

153 c, 2015; Ferrero et al. 2011, 2012, 2014, 2015; Carosi et al. 2015). Apatite is a common

accessory mineral in the migmatites investigated in this study (e.g. Acosta-Vigil et al. 2010) as

155 well as in metapelites in general (Spear and Pyle 2002). In addition, apatite is commonly

spatially associated with nanogranites in host peritectic minerals (e.g. Cesare 2008; Bartoli et al.

157 2013, Fererro et al. 2012; Fererro et al. 2015), and hence it reasonable to infer that apatite was

158 present during suprasolidus metamorphism in the samples included in the database of Bartoli et

al. (2016) that we use here. Melt inclusions and nanogranitoid compositions studied here are

160 hosted by garnet and, more rarely, plagioclase, cordierite, quartz and ilmenite (Bartoli et al.

161 2016), and the minor differences in the composition of the inclusions are explored in the

162 discussion. The estimated *P*–*T* conditions of the nanogranitoid and melt inclusion entrapment,

along with the experimental conditions from apatite solubility studies, are summarized in Figure

164 1.

165	Concentrations of major elements were collected via electron probe microanalysis
166	(EPMA) in various laboratories (see Bartoli at al. 2016). For 83 out of 580 analyses in Bartoli et
167	al. (2016), concentrations of P_2O_5 were not reported, and these analyses are excluded here. The
168	main limitation of using phosphorus data from the rest of the analyses is that $\sim 10\%$ of these
169	yielded concentrations of P2O5 below the limit of detection. In most routine wavelength-
170	dispersive electron probe microanalysis studies, the detection limit is inferred to be ~ 0.01 wt.%
171	(or 100 ppm) P ₂ O ₅ . The statistical treatment of these values is essential for a robust analysis of
172	the concentration data (e.g. Grunsky 2010), i.e. analyses whose P2O5 concentrations are below
173	the limit of detection are still useful even though their absolute values are not known. For a
174	robust statistical analysis of the data, values below detection have assigned concentrations based
175	on the distribution of the dataset following the methodology of Palarea-Albaladejo and Martin-
176	Fernandez (2015). The zCompositions package in the statistical software R (including the
177	multLN function) was used. This implements a multiplicative lognormal imputation of left-
178	censored values, such as values below the limit of detection (e.g. Palarea-Albaladejo and Martin-
179	Fernandez 2013). Based on this approach, 52 values that were reported as below detection in
180	Bartoli et al. (2016) were assigned a value of 0.008 wt.% P ₂ O ₅ for the purposes of plotting in this
181	study.
182	The predicted concentration of P2O5 in apatite-saturated melt based on the four solubility
183	equations, was determined using the estimated temperature of entrapment (based on petrology
184	and thermobarometry and, in the case of nanogranitoids, on the experimental rehomogenization
185	temperature as well; see Cesare et al. 2015, and references therein), combined with the major

 $186 \qquad \text{element concentrations (SiO_2, Al_2O_3, Na_2O, K_2O, CaO) of the rehomogenized nanogranites or}$

187 glassy melt inclusions measured via EPMA. The apatite solubility expression of Harrison and

188	Watson (1984) requires a value for the amount of P_2O_5 in apatite to calculate the concentration of
189	P in an equilibrated melt, whereas the other apatite solubility equations were developed to
190	calculate this value directly. Substitution of LREE and other cations can reduce the amount of
191	P_2O_5 in apatite. In general, the concentration of P_2O_5 in apatite ranges from 39 to 42 wt.% (Pan
192	and Fleet 2002). REE-rich apatite can have concentrations of P_2O_5 down to ~34 wt.% (Pan and
193	Fleet 2002). Here, we use a value of 41 wt.% P_2O_5 in apatite, which is an average of the
194	compositions reported in Webster and Piccoli (2015).
195	
196	Results
197	Comparison between measured and experimentally predicted P ₂ O ₂ concentrations
198	Figures 2 to 4 show different ways of comparing the measured versus experimentally predicted
199	P ₂ O ₅ concentrations of melt inclusions in migmatites and granulites. Given that the solubility of
200	apatite in anatectic melt is expected to be a function of several variables, we start with comparing
201	(Fig. 2) the measured concentrations of P_2O_5 in rehomogenized nanogranites and glassy melt
202	inclusions, along with the predicted concentrations based on the relatively simple apatite
203	solubility expressions of Harrison and Watson (1984) and Wolf and London (1994), for a variety
204	of SiO ₂ concentrations, temperatures and values of ASI in the melt. Thus, Fig. 2 compares the
205	experimentally predicted combinations among P2O5, SiO2, temperature and ASI for the chosen
206	range of values (SiO ₂ , 60-80 wt.%; temperature, 650-1000 °C; ASI, 1.1-1.4; red discontinuous
207	lines in the diagrams), versus measured (by EPMA) P2O5, SiO2 and ASI in the melt inclusions
208	and associated temperatures obtained from petrology/geothermobarometry/experimental
209	rehomogenization (all data coming from Bartoli et al. 2016, and references therein). Roughly
210	90% of the measured values from rehomogenized nanogranites and melt inclusions have

211	concentrations of SiO ₂ between 70 and 76 wt.% (Fig. 2a) and ASI values between 1.0 and 1.4
212	(Fig. 2b). For each of the investigated localities, there is a relatively large scatter in the
213	concentrations of P_2O_5 and SiO_2 as well as ASI values. For example, melt inclusions from the El
214	Hoyazo enclaves have concentrations of SiO ₂ mostly ranging from 70–76 wt.%, ASI values
215	between 1.0 and 1.4, and concentrations of P_2O_5 varying from <0.1 to 0.5 wt.%. As a whole, the
216	data do not follow the T-SiO ₂ trends of the Harrison and Watson (1984) solubility expression
217	over a range of temperatures, and most plot at higher P_2O_5 values than predicted by this
218	solubility expression (Fig. 2a). However, the data do tend to cluster in Figure 2b around the line
219	representing the solubility expression of Wolf and London (1994), that is related to the ASI of
220	the melt and is independent of temperature.
221	Because the solubility of apatite is expected to be a complex function of temperature and
222	melt composition (Harrison and Watson 1984; Pichavant et al. 1992; Bea et al. 1992; Wolf and
223	London 1994), the theoretical saturation concentration of P_2O_5 with respect to apatite in each of
224	the rehomogenized nanogranite and glassy melt inclusion was calculated from the measured (by
225	EPMA) values of SiO ₂ , Al ₂ O ₃ , CaO, Na ₂ O and K ₂ O, combined with the estimated entrapment
226	temperature from each locality. This allows for a comparison of the measured versus estimated
227	(for an apatite-saturated system) concentrations of P_2O_5 in individual rehomogenized
228	nanogranites and melt inclusions. The calculated concentrations of P2O5 from each of the
229	solubility expressions are plotted against the measured amount of P_2O_5 (wt.% from EPMA) from
230	individual rehomogenized nanogranites or melt inclusions in Figure 3. Points plotting below the
231	1:1 line indicate that the measured concentrations of P_2O_5 are greater than the predicted values
232	using the four apatite solubility expressions, measured concentrations of SiO ₂ , Al ₂ O ₃ , CaO, Na ₂ O
233	and K ₂ O, and estimated entrapment temperatures. Points plotting above this line indicate that the

255	Two groups of melt inclusions based on P ₂ O ₅ concentrations and entrapment temperatures
254	
253	overestimates the measured P_2O_5 (Figs. 3, 4).
252	overestimates most of the measured values, whereas WL94 neither systematically under- nor
251	HW84 and B92 expressions mostly underestimate the concentrations of P_2O_5 , the P92 expression
250	overestimated for each of the four solubility expressions (Fig. 3). For the other locations, the
249	rocks such as the Bohemian massif and the Kerala Khondalite belt (Fig. 1), are systematically
248	For specific sample suites, rehomogenized nanogranitoids from the highest temperature
247	limited predictive power (Fig. 3d).
246	measured P ₂ O ₅ concentrations tend to follow the WL94 model trend (Fig. 2b), this model has
245	there is no clear correlation between measured and predicted values indicating that, although
244	does not systematically under- or overestimate the measured P_2O_5 values (Fig 4d); however,
243	for the particular case of the metaluminous La Galite glassy melt inclusions. The WL94 model
242	solubility expression overestimates the concentration of P_2O_5 (Fig. 4c) for most samples, except
241	inclusions (Fig. 4a) and the B92 solubility model underestimates \sim 70% (Fig. 4b). The P92
240	HW84 solubility model underestimates $>90\%$ of the P_2O_5 values in the nanogranitoids and melt
239	underestimate the P ₂ O ₅ concentration of apatite-saturated melt (Figs. 2–4). For example, the
238	The expressions of Harrison and Watson (1984) and Bea et al. (1992) mostly
237	histograms in Figure 4.
236	measured concentrations of P_2O_5 versus predicted concentrations of P_2O_5 are plotted as
235	further compare the measured versus calculated values, the log-normalized ratios of the
234	measured values of P_2O_5 are lower than those calculated from the solubility expressions. To

256	The distributions of the concentrations of P ₂ O ₅ in nanogranitoids and melt inclusions separated
257	by location and published temperatures of entrapment are summarized in Figure 5. With the
258	exception of metaluminous melt inclusions from metatonalites in La Galite, melt inclusions and
259	nanogranitoids with entrapment temperatures \leq 825 °C have high median P ₂ O ₅ values (~0.15–
260	0.25 wt.%), whereas the highest-temperature samples yield low (<0.2 wt.%) concentrations of
261	P ₂ O ₅ .
262	
263	Discussion
264	None of the available experimental models consistently predict the measured P2O5
265	concentrations of the rehomogenized nanogranitoids and glassy melt inclusions. There is a weak
266	correlation between phosphorus concentration and ASI (Fig. 2b), which has also been observed
267	in experimental studies (Mysen et al. 1981; Mysen 1998; Wolf and London 1994), but none of
268	the apatite solubility models accurately predict P2O5 concentration in the studied nanogranitoids
269	and glassy melt inclusions (Fig. 3, and in particular Fig. 3d). The inconsistency between the
270	measured and predicted phosphorus concentrations of inclusions from solubility equations may
271	result from several factors and processes. Some of these factors/processes could explain why
272	measured P_2O_5 concentrations are lower than predicted (i.e. overestimation of P_2O_5 by models,
273	mostly applicable to the highest-T, lowest-P ₂ O ₅ melt inclusions), including: (1) challenges
274	associated with EPMA of rehomogenized nanogranitoids and melt inclusions; (2) sequestration
275	of P by substitution in major minerals; (3) sequestration of P by crystallization of monazite due
276	to saturation of LREE in melt during apatite dissolution; (4) unavailability of apatite, either by
277	inclusion of apatite in major minerals or complete apatite dissolution; and (5) disequilibrium
278	during anatexis or rapid entrapment of melt inclusions before matrix melt-residuum

279	equilibration. Other factors/processes may explain why measured P2O5 concentrations are higher
280	than predicted that are most relevant for the lowest-T, highest- P_2O_5 melt inclusions include: (6)
281	unsuitability of the solubility equations at the $P-T-X$ conditions of melt entrapment; (7)
282	measured melt compositions may not reflect those of the matrix melt at the time of entrapment,
283	due to syn- and/or post-entrapment processes. Each of these possibilities is discussed below,
284	followed by a more detailed assessment using the large data set of melt inclusions from the El
285	Hoyazo enclaves. We acknowledge that these processes may work against each other with
286	respect to the concentration of phosphorus in anatectic melt, but comparing the measured versus
287	predicted values of P2O5 in rehomogenized nanogranites and melt inclusions provides a first-
288	order assessment of the potential importance of each process. Afterwards, we discuss some
289	implications for studies of granite petrogenesis.
290	
291	Floature much a minute plantic of ush among an inchangement to id and planter mult inclusions
-	Electron probe microanalysis of renomogenized nanogranitoid and glassy melt inclusions
292	Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of
292 293	Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of $<20 \ \mu$ m, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny
292 293 294	Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of $<20 \ \mu m$, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny inclusions requires in most cases a small beam size ($\sim 1 \ \mu m$), which can lead to the loss of Na and
292 293 294 295	Electron probe microanalysis of renomogenized nanogramitoid and glassy melt inclusions Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of $<20 \ \mu\text{m}$, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny inclusions requires in most cases a small beam size ($\sim 1 \ \mu\text{m}$), which can lead to the loss of Na and possibly K during excitation (Morgan and London 2005; Ferrero et al. 2012). Consequently, the
292 293 294 295 296	Electron probe microanalysis of renomogenized nanogramitoid and glassy melt inclusions Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of $<20 \ \mu\text{m}$, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny inclusions requires in most cases a small beam size (\sim 1 μ m), which can lead to the loss of Na and possibly K during excitation (Morgan and London 2005; Ferrero et al. 2012). Consequently, the concentrations of K and Na in the measured glassy melt inclusions and rehomogenized
292 293 294 295 296 297	Electron probe microanalysis of renomogenized nanogramitoid and glassy methinicusions Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of $<20 \ \mu\text{m}$, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny inclusions requires in most cases a small beam size ($\sim 1 \ \mu\text{m}$), which can lead to the loss of Na and possibly K during excitation (Morgan and London 2005; Ferrero et al. 2012). Consequently, the concentrations of K and Na in the measured glassy melt inclusions and rehomogenized nanogranitoids may be lower than true values, producing artificially higher ASI values.
292 293 294 295 296 297 298	Electron probe microanalysis of renomogenized nanogranitoid and glassy met inclusions Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of <20 μ m, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny inclusions requires in most cases a small beam size (~1 μ m), which can lead to the loss of Na and possibly K during excitation (Morgan and London 2005; Ferrero et al. 2012). Consequently, the concentrations of K and Na in the measured glassy melt inclusions and rehomogenized nanogranitoids may be lower than true values, producing artificially higher ASI values. While this is not expected to have a large impact on the measured concentration of SiO ₂ ,
292 293 294 295 296 297 298 299	Electron probe microanalysis of renomogenized nanogramitoid and glassy metriniciusions Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of <20 μ m, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny inclusions requires in most cases a small beam size (~1 μ m), which can lead to the loss of Na and possibly K during excitation (Morgan and London 2005; Ferrero et al. 2012). Consequently, the concentrations of K and Na in the measured glassy melt inclusions and rehomogenized nanogranitoids may be lower than true values, producing artificially higher ASI values. While this is not expected to have a large impact on the measured concentration of SiO ₂ , which is essential for the HW84 solubility model, it may result in slightly higher ASI values,
 292 293 294 295 296 297 298 299 300 	Electron probe microanalysis of renomogenized nanogramitoid and glassy ment inclusions Homogenized melt inclusions in peritectic host minerals are usually very small with diameters of <20 μ m, which makes EPMA difficult (Bartoli et al. 2016). EPMA analysis of these tiny inclusions requires in most cases a small beam size (~1 μ m), which can lead to the loss of Na and possibly K during excitation (Morgan and London 2005; Ferrero et al. 2012). Consequently, the concentrations of K and Na in the measured glassy melt inclusions and rehomogenized nanogranitoids may be lower than true values, producing artificially higher ASI values. While this is not expected to have a large impact on the measured concentration of SiO ₂ , which is essential for the HW84 solubility model, it may result in slightly higher ASI values, which are important in the solubility expressions of P92, B92 and WL94. For the WL94

302	values for P ₂ O ₅ (Fig. 4d). The P92 solubility expressions mostly overestimate the concentration
303	of P_2O_5 in the nanogranitoids and melt inclusions, whereas B92 mostly underestimate it except
304	for the highest-T samples from Bohemian Massif and Kerala Khondalite. Hence the potential
305	loss of alkalis during the EPMA of the melt inclusions might explain the inconsistency regarding
306	the P92 model and values for the highest-temperature inclusions predicted by B92. However,
307	considering that the analysis of nanogranitoids and melt inclusions used secondary glass
308	standards to correct for the loss of alkalis as recommended by Morgan and London (2005), we
309	conclude that K and Na migration during EPMA is not expected to be the principal cause of the
310	deviation between measured and predicted concentrations of P2O5 in melt inclusions and
311	nanogranitoids.
312	Due to the small size of melt inclusions, the excitement volume during EPMA may
313	include parts of the host minerals. The effect of this would include an analytical mix between the
314	two. Most melt inclusions are hosted by garnet, which can have concentrations of P up to a few
315	hundred ppm (Kohn and Malloy 2004; Pyle and Spear 1999), which is near the detection limit of
316	~100 ppm for P_2O_5 in routine analyses. Most analyses of P_2O_5 in melt inclusions are >>100ppm.
317	In the hypothetical case that the analysis of nanogranitoid inclusions results in a mix of
318	homogenized glass and the relatively P-poor host mineral (e.g. garnet), then measured values
319	will be slightly lower than predicted values from the solubility equations. In addition, a mixed
320	analysis between garnet and the rehomogenized nanogranites or melt inclusions could yield an
321	artificially elevated ASI value that would overestimate the calculated concentration of P_2O_5 in
322	apatite-saturated melt (except for the HW84 apatite solubility model). Both of these scenarios
323	would result in calculated values of P_2O_5 in apatite-saturated melt that are higher than the
324	measured values, which is not observed in most cases (Fig. 3). Furthermore, the concentrations

325	of FeO and MgO in the measured nanogranitoids and melt inclusions are too low to have
326	included a significant component of garnet in the analyses (Bartoli et al. 2016). Therefore, mixed
327	analyses alone cannot account for the discrepancies between the measured and predicted
328	concentrations of P ₂ O ₅ in the rehomogenized nanogranites and melt inclusions.

329

330 Sequestration of P by partitioning into major minerals

331 The growth and consumption of the major rock-forming minerals can affect the stability of

apatite, mostly by partitioning P during their growth, which may decrease the effective

333 concentration of P in the system and enhance apatite consumption during partial melting. Apatite

is generally considered to represent the main repository for P in migmatites (e.g. London et al.

1999). However, major rock-forming silicate minerals can accommodate a significant proportion

of the P budget during metamorphism (e.g. Spear and Pyle 2002). In most metasedimentary

337 migmatites, garnet can represent a significant sink for P with concentrations of a few hundred

338 ppm (Kohn and Malloy 2004; Pyle and Spear 1999; Acosta-Vigil et al. 2010). Plagioclase is

339 common in metasedimentary and most igneous migmatites and can accommodate several

hundred ppm of P (e.g. Villaseca et al. 2003; Acosta-Vigil et al. 2010; Dumond et al. 2015).

341 Alkali feldspar can also accommodate significant amounts of P in strongly peraluminous melt

342 (London 1992; London et al. 2012). A simple mass balance calculation by Yakymchuk et al.

343 (2018) indicates that garnet and plagioclase can host up to $\sim 20\%$ of the P budget in an average

344 metapelite. During suprasolidus prograde metamorphism in metapelites, plagioclase is generally

345 expected to be produced from the wet solidus up to muscovite exhaustion (Yakymchuk & Brown

346 2014; Yakymchuk et al. 2017). K-feldspar is predicted to grow during muscovite and biotite-

- 347 breakdown melting, and is consumed at high-temperatures above the stability of biotite. Garnet 348 is expected to grow during biotite-breakdown melting.
- 349 Figure 6 is a P-T diagram showing the amount of apatite dissolution for an average
- 350 metapelite composition in a closed system (i.e. no melt loss or gain), using the WL94 solubility
- 351 expression and considering the simple scenario where apatite is the only repository of P.
- 352 Between the wet solidus and biotite out, apatite dissolution is required to saturate the increasing
- proportion of melt. If P substitutes into major minerals, then the dissolution contours on Figure 6 353
- 354 will shift to lower temperatures. Consequently, apatite exhaustion is more likely to occur at
- 355 lower temperatures in garnet- and feldspar-rich migmatites.
- 356 The incorporation of P into major minerals would therefore decrease the concentration of 357 P in the reaction volume or effective bulk composition, to the point of producing the exhaustion 358 of apatite at lower temperatures. If this is the case, however, models would overestimate the P_2O_5 359 concentration in the nanogranitoids and melt inclusions, contrary to what we observe, except for
- 360 model P92 and perhaps the highest-temperature samples for models HW84 and B92 (Figs. 3 and
- 361

4).

362

Sequestration of P by crystallization of monazite 363

364 Dissolution of apatite in strongly peraluminous melt can result in concomitant crystallization of 365 monazite at the apatite-melt interface (Wolf and London 1995; Wolfram et al. 2017), due to the 366 relative solubilities of apatite and monazite in peraluminous granite melts (the solubility of 367 apatite and monazite increases and decreases, respectively, in peraluminous melt at constant 368 temperature). The current melt inclusion dataset includes mostly moderate to strongly 369 peraluminous melts (Fig. 2b) and, therefore, it is possible that monazite crystallized during the

dissolution of apatite into the matrix melt of the host anatectic rocks. In this scenario, a portion
of P coming from the dissolution of apatite would have been sequestered into the crystallizing
monazite, moving the dissolution contours of Fig. 6 towards lower temperatures. Consequently,
crystallization of P-rich accessory minerals (e.g. monazite) will also reduce the stability of
apatite at high temperatures and may ultimately result in early apatite exhaustion and melt that is
undersaturated in P.

376

377 Abundance and microstructural location of apatite

Measured concentrations of P_2O_5 in melt inclusions and nanogranitoids are generally higher at lower temperature and lower at UHT conditions (Fig. 5), except for metatonalite samples from La Galite. This contrasts with the general positive temperature-dependence of apatite solubility determined from experimental studies. Two possible explanations for this discrepancy are that apatite became exhausted in the migmatites and granulites at high temperature due to (i) progressive increase in the proportion of melt with or without P substitution into peritectic minerals, or (ii) the physical isolation of apatite away from the reaction volume.

385 The ASI of anatectic melt is predicted to increase during heating above the solidus in an 386 equilibrated system (Johnson et al. 2015; Yakymchuk et al. 2017; Yakymchuk 2017). Between 387 the wet solidus and biotite out, apatite dissolution is required to saturate the increasing 388 proportion of progressively more peraluminous melt. Hence at very high-temperature conditions, 389 apatite exhaustion may be caused by progressive partial melting and apatite dissolution (Fig. 6). 390 For example, Nandakumar and Harley (2019) estimate that migmatites in the Kerala Khondalite 391 belt have lost \sim 30% melt, which may have been enough to consume most apatite (c.f. 392 Yakymchuk 2017). At increasing temperatures above apatite exhaustion, the concentration of P

393	in the melt will decrease due to the breakdown of P-poor minerals and progressive dilution (Fig.
394	7). In general, if apatite exhaustion is the primary reason for the discrepancy between measured
395	and predicted P_2O_5 concentrations, each solubility model would overestimate P_2O_5 in the
396	nanogranitoids and melt inclusions, and this is not observed (Figs. 3 and 4). Only the P92
397	solubility expression consistently overestimates concentrations of P2O5 in nanogranitoids (Fig.
398	4c). The highest temperature samples from the Bohemian Massif, the Kerala Khondalite belt and
399	the Barun gneisses (Figs. 1 and 5) are broadly metapelitic in composition and the solubility of
400	apatite is expected to increase with increasing temperature and melt ASI. Considering that apatite
401	may become exhausted at high temperature, it is possible that apatite was locally completely
402	consumed and further melting resulted in the dilution of the melt in P_2O_5 (Fig. 7). In this
403	scenario, the concentration of P_2O_5 in the melt trapped by growing peritectic minerals is
404	expected to be lower than for apatite-saturated melt. The systematic overestimation of P_2O_5 in
405	melt inclusions for these samples by all experimental models suggests that the discrepancy
406	between measured and predicted P_2O_5 concentrations might be due to apatite exhaustion for the
407	particular cases of the highest temperature rocks. This process does not likely explain, however,
408	the overestimation of P by B92 and WL94 in part of the lower-T melt glassy inclusions and
409	nanogranitoids, or by P92 in all of the lower-T melt inclusions and nanogranitoids.
410	Sequestration of apatite away from the reaction volume by inclusion into residual or
411	peritectic minerals decreases the effective concentration of P in the system. This would also
412	reduce the amount of apatite available to the melt and may result in early (i.e. low <i>T</i>) apatite
413	exhaustion relative to the closed-system equilibrium model in Figure 6. However, previously
414	conducted microstructural studies in migmatites have concluded that accessory minerals tend to
415	be located at grain boundaries, particularly those with larger grain sizes (Watson et al. 1989; Bea

416 1996); therefore, accessory minerals are generally expected to be accessible to the melt.

417 Consequently, apatite sequestration is not expected to be the primary cause of the discrepancy
418 between measured and predicted concentrations of phosphorus in nanogranites and glassy melt
419 inclusions.

420

421 **Disequilibrium**

422 The dissolution of apatite into anatectic melt is sensitive to temperature and water content 423 (Harrison and Watson 1984), and involves the diffusion of P and Ca away from the interface and 424 the uphill diffusion of Al towards the apatite-melt interface (Wolf and London 1994). During 425 anatexis, the timescales of melt extraction will compete with dissolution rates, which can result 426 in undersaturated melt compositions with respect to apatite (Watt and Harley 1993; Zeng et al. 427 2005). Very short melt extraction rates of decades to centuries have been reported in some 428 studies (Harris et al. 2000; Villaros et al. 2009) and are generally related to dynamic systems 429 undergoing anatexis and deformation. The timescales of melt extraction and accessory mineral 430 dissolution are important in studies of granites, however, melt inclusions and nanogranitoids 431 represent melt trapped in growing peritectic minerals during melting. The extent of equilibration 432 between this trapped melt and accessory minerals will relate to the timescales of growth of the 433 peritectic mineral relative to the rates of dissolution of the accessory minerals and diffusion of 434 their essential structural constituents.

The timescales of prograde metamorphism in anatectic terranes and of peritectic garnet growth, usually range from Ma to tens of Ma (e.g. Hermann and Rubatto 2003; Clark et al. 2011; Weinberg 2016). These timescales are much longer than the time expected to dissolve apatite under most geologically realistic circumstances. For example, the dissolution timescale of a 500

439	μ m diameter apatite grain in melt with 6 wt.% H ₂ O at 750°C is expected to be < 1 ka (Harrison
440	and Watson 1984). Therefore, in this scenario, it is likely that apatite equilibrates with the
441	anatectic melt (at least locally) in high-temperature terranes. However, there are also studies
442	concluding that the entrapment of melt inclusions by growing crystals requires growth rates of
443	10^{-8} – 10^{-10} m/s (Baker 2008), implying growth of 5–10 mm diameter host crystals in days to
444	years. Hence, although metamorphic cycles last Ma to tens of Ma, it is unclear how long it takes
445	to grow porphyroblasts of the peritectic minerals in anatectic systems.
446	Regardless of the timescales and temperatures of partial melting, disequilibrium between
447	apatite and melt should result in the systematic overestimation of P_2O_5 concentrations by the
448	apatite solubility expressions. For the samples from the Kerala Khondalite belt (Cesare et al.
449	2009; Ferrero et al. 2012) and the Bohemian Massif (Ferrero et al. 2015), most concentrations of
450	P_2O_5 are overestimated by the solubility expressions (Fig. 4). However, these samples also
451	record the highest temperatures and should be least susceptible to disequilibrium because of the
452	strong temperature dependence on apatite dissolution kinetics (e.g. Harrison and Watson 1984).
453	An alternative and better explanation for the overestimation of concentrations of P_2O_5 in these
454	samples, as discussed earlier, may be the exhaustion of apatite at high temperature (Figs. 6 and
455	7). For some of the overestimated P_2O_5 concentrations by P92, WL94 and B92 (Fig. 3), this
456	process could also explain part of the difference between measured and predicted concentrations
457	of P ₂ O ₅ , particularly for the case of the lowest-T melt inclusions and nanogranitoids, although
458	the growth rate of the host minerals in each of the case studies is also a key but unknown
459	variable.
460	

461 Unsuitability of solubility equations

462	Current solubility equations for apatite in melt are based on hundreds of experimental runs over a
463	wide range of melt compositions and temperatures. The HW84 solubility equation was calibrated
464	for temperatures of 850–1500°C (Fig. 1). Melt inclusions from samples with the highest
465	temperature of entrapment (e.g. Bohemian Massif and the Kerala Khondalite belt) have
466	measured concentrations of P_2O_5 that are around or below the values predicted by the HW84
467	expression (Fig. 3a). Although the HW84 solubility expression does not consider the aluminosity
468	of the melt, it provides the closest estimates for the amount of P_2O_5 in anatectic melt at high
469	temperatures (compared to B92, P92 and WL94). However, the HW84 expression generally
470	underestimates the amount of P ₂ O ₅ in melt inclusions from the lower temperature localities.
471	Interestingly, samples from the Bohemian Massif and Kerala Khondalite belt have some of the
472	lowest concentrations of P_2O_5 in rehomogenized nanogranites and melt inclusions, and this may
473	be due to the complete consumption of apatite as discussed earlier.
474	The B92 apatite solubility expression mostly underestimates the amount of P_2O_5 in melt
475	inclusions and nanogranitoids (Fig. 4b). One possible reason for this is that the calibration is
476	based on the experimental data of Holtz and Johannes (1991). These authors investigated melt
477	compositions with SiO ₂ $>$ 75% and ASI values between 1.250 and 1.467 – most of the melt
478	inclusion data from Bartoli et al. (2016) have lower SiO ₂ and ASI values (Fig. 2). In addition, the
479	B92 solubility expression is also based on the Harrison and Watson (1984) expression that was
480	calibrated using higher temperature experiments than the estimated entrapment temperatures of
481	most melt inclusions. Therefore, the B92 expression may not be appropriate for investigating
482	apatite solubility in relatively low SiO ₂ and low ASI melts at temperatures <850°C.
483	The P92 solubility model predicts very high values for the concentration of P_2O_5 in
484	anatectic melt of up to 2 wt.% (Fig. 3c). The experimental results of Pichavant et al. (1992)

485	contain glasses with wt.% concentrations of P_2O_5 , and the P92 solubility expression predicts >1
486	wt.% P_2O_5 in melt even at modest ASI values. These are significantly higher than P_2O_5
487	concentrations in nanogranitoids (Fig. 2) and in peraluminous granites (e.g. Pichavant et al.
488	1992).
489	The WL94 solubility expressions coupled with the melt inclusion compositions from
490	Bartoli et al. (2016) result in roughly half of the predicted concentrations of P ₂ O ₅ underestimated
491	and half overestimated (Fig. 4d). The WL94 expression significantly overestimates the
492	concentrations of P_2O_5 in the melt inclusions in some cases (Fig. 3d). For example, 118 melt
493	inclusions (out of 497) are predicted to have P_2O_5 concentrations >0.5 wt.% whereas only 19
494	measured melt inclusions have concentrations >0.5 wt.%.
495	Previous experimental studies have shown that temperature, concentration of SiO ₂ , and
496	the ASI value of the melt are three important variables controlling the solubility of apatite in
497	granitic melts. However, there is the possibility that the currently proposed relationships between
498	apatite solubility and T, SiO ₂ and ASI values are not accurate enough, and/or that there are
499	additional variables that should be considered. Figure 8 illustrates the inconsistency of current
500	models predicting P ₂ O ₅ concentrations in melt inclusions from the El Hoyazo anatectic enclaves
501	in the Neogene Volcanic Province of SE Spain. This difference between the measured and
502	predicted concentrations of P ₂ O ₅ in melt among the several experimental models—which is a
503	function of ASI, weight % SiO ₂ and other possible factors—can reach up to ~1.0–1.5 wt.% and is
504	largest in high-SiO ₂ and high-ASI compositions. This may suggest that future experimental
505	studies should focus on investigating the solubility of apatite in strongly peraluminous, SiO ₂ -rich

506 melts that are analogous to evolved S-type granites. Importantly, the unsuitability of solubility

507	equations is one factor that may explain the underestimation of P by models, which is mostly
508	applicable to the lowest-T, highest-P ₂ O ₅ glassy melt inclusions and nanogranitoids.

509

510 Compositions of melt inclusions and rehomogenized nanogranitoids

511 The comparison of experimentally-derived apatite solubility expressions and measured

512 compositions of rehomogenized nanogranitoids and melt inclusions requires that the analyzed

513 inclusions are representative of the matrix melt surrounding the growing mineral host. Melt

trapped by growing peritectic minerals is primary by definition (e.g. Cesare et al. 2011, 2015;

515 Bartoli et al. 2014), however, it might not be representative of the matrix melt composition at the

516 time of entrapment. This may be due to melting in disconnected pockets along grain boundaries

517 with variable interaction with apatite. In addition, syn-entrapment processes taking place at the

518 mineral-melt interfaces and/or post-entrapment processes can both modify an originally

519 representative matrix melt composition. Syn- and post-entrapment modification can be a major

520 problem associated with the study and interpretation of melt inclusion compositions (Roedder

521 1984; Acosta-Vigil et al. 2017).

522 For the particular case of melt inclusions in migmatites and granulites, evaluating the 523 significance of syn- and post-entrapment processes needs to be carefully evaluated, case by case, 524 by acquiring, analyzing and comparing results from large and high-quality analytical datasets on 525 many occurrences, ideally covering a variety of P-T conditions, host rock compositions, and 526 geodynamic settings (Cesare and Acosta-Vigil 2011, Cesare et al. 2011). Trapping of locally 527 derived melt in isolated equilibration domains without apatite could produce unexpectedly low P 528 concentrations in the melt inclusions. Syn-entrapment processes could either deplete or increase 529 the concentration of P in the melt inclusions with respect to the original matrix melt, depending

530	on mineral host growth rates and diffusivity and compatibility of P with respect to the host. For
531	example, a rapidly growing mineral host combined with the slow-diffusing P ($\sim 10^{-14} - 10^{-15} \text{ m}^2/\text{s}$
532	in hydrous granite melt at 750-800 °C; Pichavant et al. 1992; Wolf and London 1994) could
533	produce enrichments of this element in the interface melt up to concentrations above the
534	currently known saturation of apatite. Post-entrapment processes could also either increase or
535	decrease P in the melt inclusions via diffusive equilibration of P with host mineral, depending on
536	the starting concentration of P in, and the equilibrium partition coefficient between, host and
537	melt. Each particular case study must, therefore, be analyzed in detail to understand the potential
538	effects of these processes.
539	The results from previous analyses of the currently available datasets suggest that local
540	melting and syn- and post-entrapment processes did not control/affect the composition of trapped
541	matrix melts regarding their major elements, volatiles and incompatible trace element
542	concentrations; however, they seem to affect the concentrations of the compatible (with respect
543	to the host mineral) trace elements (Acosta-Vigil et al. 2010, 2017; Bartoli et al. 2014, 2016;
544	Cesare et al. 2015; see more details below, section on El Hoyazo). Phosphorus can generally be
545	considered as incompatible with respect to garnet and feldspars (except when melt ASI >1.35, in
546	which case P becomes compatible in alkali feldspars; London et al. 1993; Bea et al. 1994).
547	Hence, measured P concentrations in melt inclusions are probably representative of the melt at
548	the time of entrapment. However, syn- and post-entrapment processes constitute, together with
549	the unsuitability of solubility equations, some possible explanations for the general
550	underestimation of P in melt by current apatite solubility models (Fig. 3).
551	

552 Mechanisms of anatexis from the perspective of phosphorus: insights from the El Hoyazo 553 enclaves

554 Taking advantage of the extensive and detailed study of melt inclusions in the El Hoyazo 555 anatectic enclaves, we now evaluate all the factors described above and provide some new 556 insights into the mechanisms of anatexis of these enclaves from the geochemistry of phosphorus. 557 Melt inclusions in the metasedimentary enclaves of the El Hoyazo peraluminous dacite (Betic 558 Cordillera, SE Spain) were trapped during anatexis of the lower continental crust of Southern 559 Iberia at ~ 9 Ma (Cesare et al. 2003, 2009), and were quenched to glass upon fragmentation of the 560 protolith, incorporation into the dacite magma and rapid extrusion at ~ 6 Ma (Zeck and Williams 2001), with no or rare crystallization of daughter minerals (Cesare et al. 1997; Acosta-Vigil et al. 561 562 2007). Previous studies have concluded that melt inclusions in minerals of El Hoyazo enclaves 563 record the evolution in the composition of the melt, and the extent of melt–residue equilibrium, 564 during prograde metamorphism and anatexis of the host metapelite from the wet solidus to 565 temperatures of ~750 °C (Cesare and Maineri 1999; Acosta-Vigil et al. 2007, 2010, 2012). As 566 for the case of all the lower-temperature (Ronda1, La Galite), and some of the high-temperature 567 (Ronda2, Kali Gandaki) nanogranitoids and glassy melt inclusions, the HW84 and B92 solubility 568 expressions mostly underestimate, P92 overestimate, whereas WL94 does not systematically 569 under- or overestimate P_2O_5 in these inclusions, when compared with measured P_2O_5 570 concentrations. The systematics of P in this case study might, therefore, be used as a proxy for 571 most analyzed nanogranitoids and melt inclusions, except for the highest-temperature, lowest-P 572 nanogranitoids.

573 Rehomogenization and analysis of the melt inclusions. Melt inclusions in the El 574 Hoyazo enclaves were trapped during partial melting at the base of a thinned continental crust

575	and then quenched to glass upon rapid extrusion, with no or rare crystallization of daughter
576	minerals (Cesare et al. 1997; Acosta-Vigil et al. 2007, 2010, 2012). This avoids the experimental
577	re-homogenization stage, which is necessary for accurately measuring the compositions of
578	nanogranitoids (Cesare et al. 2015). The analyzed melt inclusions were always large enough
579	(~10–30 $\mu m)$ to accommodate a 5 μm EPMA beam and a 19 μm laser ablation beam,
580	minimizing or avoiding both the loss of alkali elements and contamination by the host during
581	major, minor, and trace element analyses of the glasses (Acosta-Vigil et al. 2007, 2010, 2012).
582	Nevertheless, these factors cannot explain the discrepancy between measured and calculated
583	P_2O_5 concentrations.
584	Sequestration of P into major and accessory minerals, and extent of melt–residue
585	equilibrium. The time interval between the initiation of melting and melt inclusion entrapment
586	during anatexis of El Hoyazo enclaves might have been as short as days to years (Acosta-Vigil et
587	al. 2010). This scenario is different from the rest of reported low- to high-temperature
588	nanogranitoids and melt inclusions in Bartoli et al. (2016). Hence, even if accessory minerals
589	such as apatite and monazite were available to the melt, sluggish diffusion of their components in
590	melt over these short time scales, coupled with the sequestration of P by major minerals, could
591	have contributed to the undersaturation of apatite in the melt. Therefore, we evaluate the extent
592	of apatite-melt and residue-melt equilibration by (i) determining the extent of major mineral-
593	melt equilibration, (ii) determining if melt inclusion compositions record the presence of relict
594	diffusion profiles produced during the dissolution of apatite into the melt, and (iii) comparing the
595	extent of equilibration between melt inclusions and other accessory minerals such as zircon and
596	monazite, as well as the diffusivities of their essential structural constituents (Zr, Th, LREE
597	versus P) in melt.

598	EPMA and LA-ICP-MS analyses show that minerals coexisting with melt in the El
599	Hoyazo enclaves have relatively high concentrations of P (Acosta-Vigil et al. 2012a). For
600	example, plagioclase makes up \sim 35–40 wt.% of the rock and has \sim 300–800 ppm phosphorus.
601	Garnet makes up ~10–15wt.% of the rock and has P concentrations of ~100–300 ppm. K-
602	feldspar is rare (~2–3 wt.%), but contains very high concentrations of P (~1100–1300 ppm). A
603	total of ~15–20 wt.% of P budget is estimated to have been hosted by these major minerals
604	during anatexis (Acosta-Vigil et al. 2012a, unpublished data), which is similar to estimates for an
605	average metapelite based on phase equilibrium modeling (Yakymchuk et al. 2018). Using the
606	measured concentrations of P in the minerals and the matrix glass as well as minerals and glassy
607	melt inclusions, calculated mineral-melt P concentration ratios in the enclaves are as follows:
608	plagioclase/melt inclusions in plagioclase ~0.4–0.9; garnet/melt inclusions in garnet ~0.04–0.14;
609	rims of plagioclase/matrix melt ~ $0.2-1.0$; rims of garnet/matrix melt ~ $0.1-0.2$ (data from Acosta-
610	Vigil et al. 2007, 2010, Acosta-Vigil et al. in preparation). These values are all similar published
611	equilibrium distribution coefficients ($K_d^{P}_{Pl/melt} \leq 0.90$; London et al. 1993) and concentration
612	ratios measured in migmatites ($P_{Grt}/P_{leucosome} \sim 0.01$; Bea et al. 1994) and indicates that melt in the
613	enclaves (now represented by glassy melt inclusions and matrix glass) was likely at, or relatively
614	close to, equilibrium with the major mineral assemblage. Hence major minerals sequestered P
615	from, but were probably not far from equilibrium with, the melt in the El Hoyazo anatectic
616	enclaves.
617	Figure 9 shows the variation in the concentrations of P_2O_5 (~0.1–0.4 wt.% for melt
618	inclusions in plagioclase; ~0.2–0.5 wt.% for melt inclusions in garnet) and, among others, SiO_2 ,
619	SiO ₂ , CaO and ASI in the melt inclusions. Although the systematics of multicomponent diffusion
620	in granite melt are complex (e.g. Acosta-Vigil et al. 2012b, 2017), the lack of a positive

621	correlation between P ₂ O ₅ , CaO, Al ₂ O ₃ and ASI, and lack of negative correlations between e.g.
622	P_2O_5 and Si_2O , indicates that the heterogeneity shown in Fig. 9 is not a product of diffusion
623	profiles produced by the dissolution of apatite into melt (c.f. Wolf and London 1994). Such
624	diffusion profiles are generated through: (1) the addition of P and Ca into the melt, (2) the
625	concomitant uphill diffusion of Al towards the apatite-melt interface, and (3) the exchange of
626	1(Al+P) by 1Si along the diffusion profile. The absence of covariation among these components
627	is inconsistent with the preservation of relict diffusion profiles caused by apatite dissolution in
628	the El Hoyazo enclaves (compare our Fig. 9 with Figs. 2, 8, 9 from Wolf and London 1994). The
629	implication is that although matrix melt was relatively heterogeneous during anatexis in the El
630	Hoyazo enclaves, heterogeneity was not due to partial equilibration with apatite. Moreover,
631	residue and matrix melt was at or close to equilibrium with respect to P at least at mineral-melt
632	interfaces (see above).
633	Although melt inclusions from El Hoyazo are surprisingly rich in Zr, Th and LREE
634	considering timeframes of days to years and currently known diffusivities of HFSE and REE in
635	granite melt (~ 10^{-16} - 10^{-18} m ² /s at ~750 °C; Zhang et al. 2010, and references therein), melt
636	inclusions are slightly undersaturated with respect to zircon and monazite. Thus, calculated
637	saturation temperatures for zircon and monazite are \sim 25–50 °C lower than those of the
638	petrologically inferred melting reactions that produced the melt inclusions (Acosta-Vigil et al.
639	2012a). Reported diffusivities of P ($\sim 10^{-14}$ - 10^{-15} m ² /s, hydrous granite melt, 750–800 °C:
640	Pichavant et al. 1992; Wolf and London 1994) are about two orders of magnitude faster than Zr
641	and REE. Considering that the melt inclusions are close to saturation with respect zircon and
642	monazite and P diffusion is two orders of magnitude faster than the essential structural

643	constituents of these minerals (Zr, LREE), this suggests that during anatexis, melt was likely at,
644	or close to equilibrium with, apatite in the El Hoyazo enclaves.

645	Abundance and microstructural location of apatite. Apatite is present and relatively
646	abundant in the El Hoyazo enclaves (~0.5 wt.%, Acosta-Vigil et al. 2010). Although ~70–75
647	vol.% of accessory minerals (apatite, monazite and zircon) are included in major minerals
648	(plagioclase, garnet, biotite, cordierite, K-feldspar) of the enclaves, a large proportion of
649	accessory minerals contain melt inclusions, independent of their microstructural location. This
650	suggests that most of the accessory minerals, including apatite, interacted with the anatectic melt
651	(Acosta-Vigil et al. 2012a), and therefore that the sequestration of apatite within major minerals
652	did not play a role for any potential undersaturation of P_2O_5 in melt. Partitioning and
653	sequestration of P into major and accessory minerals, and disequilibrium between residue and
654	melt, therefore, do not seem to play a role in the concentrations of P in melt inclusions from the
655	El Hoyazo enclaves. In addition, these factors/processes cannot explain the underestimation of P
656	by most models in the lower-T nanogranitoids and glassy melt inclusions (Fig. 3).
657	Compositions of melt inclusions. Measured melt inclusion may not always be
658	representative of the matrix melt surrounding the growing peritectic mineral at the time of
659	entrapment. The composition of matrix melt (later trapped as melt inclusions) can be modified
660	by syn-entrapment and post-entrapment processes.
661	Syn-entrapment processes that may affect the composition of matrix melt during
662	peritectic mineral growth and melt entrapment include: (i) the generation of diffusive boundary
663	layers in the interface melt (e.g. Albarede and Bottinga 1972); and (ii) the adsorption or
664	enrichment of elements in the surface layers of rapidly growing crystals (e.g. Watson 1996). The
665	analysis of Acosta-Vigil et al. (2012a) suggests that the development of diffusive boundary

666	layers probably did not affect the composition of matrix melt being trapped as inclusions.
667	However, adsorption or enrichment of elements in the surface layers around growing crystals is
668	only expected to affect the concentrations of the compatible (with respect to the host mineral)
669	trace elements, which appear over-concentrated in the mineral host and depleted in the melt
670	inclusions with respect to published equilibrium partition coefficients. Phosphorus, however, is
671	not a compatible element either in garnet or plagioclase, at least for melt with ASI values of
672	~1.20 and Ca-rich plagioclase (London et al. 1993), as it is the case here (Acosta-Vigil et al.
673	2007, 2010). Hence, the concentration of P in the measured glassy melt inclusions in the El
674	Hoyazo enclaves is expected to be representative of the concentration in the surrounding matrix
675	melt and was probably not substantially affected by the development of syn-entrapment
676	processes. Nonetheless, syn-entrapment processes have the potential to generate local melt
677	volumes with higher concentrations of P than expected in apatite-saturated melt and may be
678	partly responsible for melt inclusions with such high concentrations of P.
679	Post-entrapment processes can also affect the composition of melt inclusions so that they
680	may not be representative of the composition of matrix melt during entrapment. Two potentially
681	significant processes include: (i) dissolution of the host mineral into the melt inclusion or
682	crystallization of the host mineral from trapped melt, and (ii) diffusive exchange of elements
683	between the host mineral and the melt inclusion. Melt inclusions from El Hoyazo were trapped at
684	\sim 10–100 °C above the wet solidus and, after entrapment, the temperature of the enclaves
685	increased ~50–150 °C (Acosta-Vigil et al. 2010). Consequently, the host mineral may have either
686	dissolved into, and/or crystallized from, the melt. However, both compositional trends for melt
687	inclusions from individual enclaves, and lack of daughter minerals in the glassy melt inclusions,
688	show that this is not the case (Acosta-Vigil et al. 2007, 2012a). Therefore, host mineral

Revision 1

689 dissolution or crystallization is not expected to have influenced the composition of glassy melt 690 inclusions in the El Hoyazo enclaves.

691 Post-entrapment diffusive exchange of P between melt inclusions and host minerals (garnet and plagioclase) could have also modified the original composition of trapped melts, 692 693 particularly considering the small size of the inclusions (a few micrometers across) compared to 694 the large size of the hosts (millimeter-sized crystals). The extent of this exchange will depend on 695 the time the system is at high temperature and the extent to which the ratio of P in the crystal to 696 the melt inclusions deviates from an equilibrium distribution. Given that (i) there are no 697 preserved diffusion profiles from the melt inclusion to the host mineral in the samples 698 investigated by Acosta-Vigil et al. (2012a), (ii) host minerals and melt inclusions are at or close 699 to equilibrium with respect to P (see above), and (iii) currently available information on the 700 effects of temperature and composition on the equilibrium distribution coefficient of P between 701 minerals and melt is very scarce (London et al. 1993; Bea et al. 1994), we conclude that if post-702 entrapment diffusional exchange between trapped melt and host mineral occurred, they were 703 minor. Therefore diffusion of P in/out of the melt inclusions does not seem to be a factor 704 explaining differences between measured and experimentally predicted P concentrations. 705 As a corollary, although the effects of syn- and post-entrapment processes on the 706 composition of trapped melts require further investigation (particularly the potential 707 accumulation of P at the mineral-melt interface during the generation of diffusive boundary 708 layers), none of the above factors alone account for the differences between measured and 709 predicted P₂O₅ concentrations in the analyzed melt inclusions. The potential unsuitability of 710 current experimental models seems to explain at least some of the discrepancy for the case of the 711 lowest-temperature, highest-P concentrations melt inclusions (Fig. 8).

712	Mechanisms of anatexis. The above analysis suggests that the studied El Hoyazo
713	anatectic system was likely at or close to equilibrium with respect to P. This includes equilibrium
714	concentrations of P in the major minerals as well as melt (now entrapped) that was close to
715	saturation with respect to apatite. Evidence for approximate equilibrium in the anatectic system
716	includes: (i) melt inclusions are close to saturation with respect to zircon and monazite, whose
717	essential structural constituents (Zr, LREE) diffuse slower in the melt with respect to P; (ii) melt
718	heterogeneity is not related with concentration profiles produced by the diffusive dissolution of
719	apatite (see above); and (iii) most experimental models underestimate P in these melt inclusions
720	(Fig. 3). Incorporation of P into the major minerals may have occurred either by destabilization
721	of apatite inclusions (see fig 8 of Acosta-Vigil et al. 2010) or through interaction with the matrix
722	melt, via dissolution of apatite into (and diffusion of P through) the melt and, likely,
723	recrystallization of the major minerals through the melt (see Cesare and Maineri 1999; Acosta-
724	Vigil et al. 2010).
725	Even though glassy melt inclusions from the El Hoyazo enclaves were likely in
726	equilibrium with the anatectic system (including concentrations P_2O_5), the compositions are
727	variable and this suggests that matrix melt was heterogeneous at the time of entrapment (Acosta-
728	Vigil et al. 2007, 2017, and Fig. 9). The presence of variable matrix melt compositions during
729	anatexis is also supported by the heterogeneity of normative Qtz-Or-Ab compositions of melt
730	inclusions from the enclaves (see Acosta-Vigil et al. 2012b, 2017). In the particular case of P_2O_5 ,
731	and based on the currently available experimental studies, P ₂ O ₅ variability in melt in anatectic
732	systems may be associated with local heterogeneities in SiO_2 and ASI in the melt (Fig. 9), and
733	not with variable degrees of apatite undersaturation in the melt.
724	

735	Implications
736	None of the four investigated apatite solubility expressions can adequately explain the
737	distribution of P2O5 concentrations from the entire suite of measured glassy melt inclusions and
738	rehomogenized nanogranitoids. Current experimental models overestimate many of the
739	concentrations of P ₂ O ₅ in the analyzed melt inclusions and rehomogenized nanogranitoids,
740	especially at high temperatures (Figs. 3, 4 and 6). This observation can be combined with other
741	information from melt inclusions (e.g. Acosta-Vigil et al. 2010, 2017; Cesare et al. 2015; Bartoli
742	et al. 2016) to understand the behavior of accessory minerals and partial melting mechanisms
743	that operate during anatexis.
744	Although future experimental studies on apatite solubility in granitic melts may change these
745	tentative conclusions, we have gained several important insights into apatite behavior in
746	anatectic systems. Concentrations of P of nanogranites from relatively low temperature samples
747	(e.g. Ronda, El Hoyazo) are mostly underestimated by apatite solubility expressions (except for
748	the P92 solubility expression; Fig. 3), which suggests that melt may become locally saturated
749	with respect to apatite even at low temperatures of melting. However, the concentration of P_2O_5
750	in the melt is probably controlled by compositional heterogeneity of the melt in anatectic systems
751	(Fig. 9). At high temperatures (\geq 800-850 °C), melt may become undersaturated in P ₂ O ₅ due to
752	exhaustion of apatite or apatite not being accessible (Bohemian massif, Kerala Khondalite, and
753	maybe Barun, Kali Gandaki; Fig. 5).
754	Considering the discussion of the entire data set and the specific example of the El Hoyazo
755	enclaves, inconsistencies between predicted and measured P2O5 concentrations are mostly
756	explained by the exhaustion of apatite during high-temperature prograde metamorphism and
757	problems with the current experimentally-derived solubility equations of apatite. One major

758	result from this study is realizing the need for more applicable experiments describing the
759	solubility of apatite in strongly peraluminous and SiO ₂ -rich granite melts (Figure 7).
760	Apatite is an important repository for radiogenic trace elements used to infer the sources of
761	granites. Apatite contains a large proportion of the REE budget of metapelites (Bea and Montero
762	1999; Ayres and Harris 1997; Acosta-Vigil et al. 2010), and apatite and monazite are estimated
763	to host >99% of the Nd budget in a typical metapelite. Hence, the Nd isotope ratio of the melt
764	will be mostly controlled by the dissolution and growth of these minerals and diffusion of Nd
765	between these minerals and melt (e.g. Zeng et al. 2005). Neodymium isotopes signatures in
766	apatite are generally homogenized at >500°C (Hammerli et al. 2014), but commonly preserve
767	their initial signatures especially if they are included in major minerals (e.g. Janots et al. 2018).
768	Apatite isotopic disequilibrium during anatexis has been proposed to account for Nd isotope
769	values of granites that do not reflect that of their sources (e.g. Zeng et al. 2005).
770	Most nanogranitoid and melt inclusion sample suites have concentrations of P2O5 that are
771	not systematically lower than the predicted apatite saturation values (Figs. 3 and 4), which is
772	inconsistent with disequilibrium. In migmatites where apatite is expected to be in equilibrium
773	with anatectic melt, Nd isotope values of apatite-saturated melts should have a compatible Nd
774	isotope signature with their source rocks. This is generally observed in studies of consanguineous
775	granulites and granites (e.g. Korhonen et al. 2010, 2015). If apatite is exhausted and monazite is
776	still present, continued melting may not change the Nd isotopic signature of the melt as long as
777	melt and monazite are in isotopic equilibrium. However, Nd isotope disequilibrium has been
778	documented in the relatively low- to moderate-temperature Himalayan leucogranites (Ayres and
779	Harris 1997). For the Himalayan samples from Kali Gandaki, P2O5 in most rehomogenized
780	nanogranitoids are overestimated by the experimental models (Figure 3). The reasons for this is

Revision 1

781	unclear, but overestimation might be due to apatite disequilibrium, apatite
782	exhaustion/unavailability, or current solubility models not being appropriate. Therefore, Nd
783	isotope disequilibrium between crustal granites and their sources seems to be due to
784	unavailability of, and/or slow diffusion of Nd in the accessory minerals.
785	The concentrations of P_2O_5 in granites can be used to distinguish S-type and I-type
786	granites (London 1992; Sha and Chappell 1999). It is important to consider that apatite-
787	exhausted UHT metapelitic sources may generate melt that is undersaturated in P_2O_5 and these
788	granites may be misdiagnosed as I-type granites. Therefore, other discriminants should be used
789	in addition to P ₂ O ₅ to distinguish different granite sources.
790	
791	Conclusions
792	The concentrations of P2O5 in melt inclusions and nanogranitoids in peritectic minerals do not
793	show systematic changes with melt composition or temperature, which is generally inconsistent
794	with experimentally derived apatite solubility models. Comparison between predicted and
795	measured P_2O_5 concentrations indicate a strong influence of the ASI in the solubility of P_2O_5 in
796	melt, but also suggests that current models are not accurate enough and have limited predictive
797	capabilities for individual sample suites. Future experimental efforts are required to model the
798	solubility of apatite in granite melts. Apatite may become exhausted at high temperatures
799	especially in protoliths with low concentrations of P_2O_5 or with a high proportion of P-rich
800	silicate minerals. Phosphorus substitution into silicate minerals will deplete apatite during
801	prograde metamorphism and melt derived from high- to ultrahigh-temperature metamorphism
802	may be undersaturated in P ₂ O ₅ relative to apatite due to apatite exhaustion and melt dilution.
803	This has implications for the Nd isotope ratios of and concentrations of P ₂ O ₅ in of melt extracted

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2019-7054

804	from the deep crust. More experimental work, particularly at high ASI and high SiO ₂ values, is
805	needed to better quantify apatite solubility in anatectic systems. However, concentrations of P2O5
806	in rehomogenized nanogranitoids and glassy melt inclusions are generally expected to be close to
807	equilibrium values.
808	
809	Acknowledgements
810	This research was partly funded by a Discovery Grant from the Natural Sciences and
811	Engineering Research Council of Canada. We thank R. Weinberg and J.C. Ayers and editor B.
812	Watson for constructive comments that greatly improved this manuscript.
813	
814	References
815	Acosta-Vigil, A., Cesare, B., London, D., and Morgan, G.B. (2007) Microstructures and composition of
816	melt inclusions in a crustal anatectic environment, represented by metapelitic enclaves within El
817	Hoyazo dacites, SE Spain. Chemical Geology, 237, 450-465.
818	Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D., and Morgan, V.I.G.B.
819	(2010) Mechanisms of Crustal Anatexis: a Geochemical Study of Partially Melted Metapelitic
820	Enclaves and Host Dacite, SE Spain. Journal of Petrology, 51, 785-821.
821	Acosta-Vigil, A., Buick, I., Cesare, B., London, D., and Morgan, G.B., VI. (2012a) The Extent of
822	Equilibration between Melt and Residuum during Regional Anatexis and its Implications for
823	Differentiation of the Continental Crust: a Study of Partially Melted Metapelitic Enclaves.
824	Journal of Petrology, 53, 1319–1356.

825	Acosta-Vigil, A., London, D., and Morgan, G.B. (2012b) Chemical diffusion of major components in
826	granitic liquids: Implications for the rates of homogenization of crustal melts. Lithos, 153, 308-
827	323.
828	Acosta-Vigil, A., London, D., Morgan, G.B., Cesare, B., Buick, I., Hermann, J., and Bartoli, O. (2017)
829	Primary crustal melt compositions: Insights into the controls, mechanisms and timing of
830	generation from kinetics experiments and melt inclusions. Lithos, 286–287, 454–479.
831	Albarede, F. and Bottinga, Y. (1972). Kinetic disequilibrium in trace element partitioning between
832	phenocrysts and host lava. Geochimica et Cosmochimica Acta, 36, 141-156.
833	Ayres, M., and Harris, N. (1997) REE fractionation and Nd-isotope disequilibrium during crustal
834	anatexis: constraints from Himalayan leucogranites. Chemical Geology, 139, 249-269.
835	Baker, D.R. (2008). The fidelity of melt inclusions as records of melt composition. Contributions to
836	Mineralogy and Petrology, 156, 377–395.
837	Bartoli, O. (2017) Phase equilibria modelling of residual migmatites and granulites: An evaluation of the
838	melt-reintegration approach. Journal of Metamorphic Geology, 35, 919-942.
839	Bartoli, O., Cesare, B., Poli, S., Acosta-Vigil, A., Esposito, R., Turina, A., Bodnar, R.J., Angel, R.J., and
840	Hunter, J. (2013a) Nanogranite inclusions in migmatitic garnet: behavior during piston-cylinder
841	remelting experiments. Geofluids, 13, 405-420.
842	Bartoli, O., Cesare, B., Poli, S., Bodnar, R.J., Acosta-Vigil, A., Frezzotti, M.L., and Meli, S. (2013b)
843	Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-
844	type granite formation. Geology, 41, 115–118.
845	Bartoli, O., Tajčmanová, L., Cesare, B., and Acosta-Vigil, A. (2013c) Phase equilibria constraints on
846	melting of stromatic migmatites from Ronda (S. Spain): insights on the formation of peritectic
847	garnet. Journal of Metamorphic Geology, 31, 775-789.

848	Bartoli, O., Cesare, B., Remusat, L., Acosta-Vigil, A., and Poli, S. (2014). The H2O content of granite
849	embryos. Earth and Planetary Science Letters, 395, 281-290.

- Bartoli, O., Acosta-Vigil, A., and Cesare, B. (2015) High-temperature metamorphism and crustal
 melting: working with melt inclusions. 2015, 84(3B).
- Bartoli, O., Acosta-Vigil, A., Ferrero, S., and Cesare, B. (2016) Granitoid magmas preserved as melt
 inclusions in high-grade metamorphic rock. American Mineralogist, 101, 1543–1559.
- Bea, F., Fershtater, G., and Corretgé, L. (1992) The geochemistry of phosphorus in granite rocks and the
 effect of aluminium. Lithos, 29, 43–56.
- 856 Bea, F. and Montero, P. (1999). Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and
- 857 U during metamorphism and partial melting of metapelites in the lower crust: an example from
- the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochimica et Cosmochimica Acta, 63,
- 859 1133–1153.
- Bosse, V. and Villa, I.M. (2019). Petrochronology and hygrochronology of tectono-metamorphic events.
 Gondwana Research, 71, 76–90.
- 862 Brown, C.R., Yakymchuk, C., Brown, M., Fanning, C.M., Korhonen, F.J., Piccoli, P.M., and Siddoway,
- 863 C.S. (2016) From Source to Sink: Petrogenesis of Cretaceous Anatectic Granites from the
- Fosdick Migmatite–Granite Complex, West Antarctica. Journal of Petrology, 57, 1241–1278.
- 865 Carosi, R., Montomoli, C., Langone, A., Turina, A., Cesare, B., Iaccarino, S., Fascioli, L., Visonà, D.,
- 866 Ronchi, A., and Rai, S.M. (2015) Eocene partial melting recorded in peritectic garnets from
- 867 kyanite-gneiss, Greater Himalayan Sequence, central Nepal. Geological Society, London,
- Special Publications, 412, 111–129.
- 869 Cesare, B. (2008) Crustal melting: working with enclaves. Working with migmatites, 38, p. 37-55.
- 870 Mineralogical Association of Canada Short Course Series.

871	Cesare, B. and Maineri, C. (1999). Fluid-present anatexis of metapelites at El Joyazo (SE Spain):
872	constraints from Raman spectroscopy of graphite. Contributions to Mineralogy and Petrology,
873	135, 41–52.
874	Cesare, B., Acosta-Vigil, A. (2011). Using melt inclusions for understanding crustal melting processes.
875	McGraw-Hill Yearbook of Science & Technology, 355-359.
876	Cesare, B., Salvioli-Mariani, E., Venturelli, G. (1997). Crustal anatexis and melt extraction during
877	deformation in the restitic xenoliths at El Joyazo (SE Spain). Mineralogical Magazine, 61, 15-
878	27.
879	Cesare, B., Marchesi, C., Hermann, J., and Gómez-Pugnaire, M.T. (2003) Primary melt inclusions in
880	andalusite from anatectic graphitic metapelites: Implications for the position of the Al2SiO5
881	triple point. Geology, 31, 573–576.
882	Cesare, B., Maineri, C., Baron Toaldo, A., Pedron, D., and Acosta Vigil, A. (2007) Immiscibility
883	between carbonic fluids and granitic melts during crustal anatexis: A fluid and melt inclusion
884	study in the enclaves of the Neogene Volcanic Province of SE Spain. Chemical Geology, 237,
885	433–449.
886	Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., and Cavallo, A. (2009) "Nanogranite" and
887	glassy inclusions: The anatectic melt in migmatites and granulites. Geology, 37, 627-630.
888	Cesare, B., Acosta-Vigil, A., Ferrero, S., Bartoli, O. and (2011). Melt inclusions in migmatites and
889	granulites. In: Forster, M.A., Fitz Gerald, J.D. (Eds.), The Science of Microstructure - Part II.
890	Journal of the Virtual Explorer Electronic Edition, ISSN 1441-8142, 38, paper 2.
891	Cesare, B., Acosta-Vigil, A., Bartoli, O., Ferrero, S. (2015). What can we learn from melt inclusions in
892	migmatites and granulites? Lithos, 239, 186–216.

- Chappel, B., and White, A. (2001) Two contrasting granite types: 25 years later. Australian Journal of
 Earth Sciences, 48, 489–499.
- Clark, C., Fitzsimons, I.C.W., Healy, D., and Harley, S.L. (2011) How Does the Continental Crust Get
 Really Hot? Elements, 7, 235–240.
- 897 Corfu, F., and Stone, D. (1998) The significance of titanite and apatite U-Pb ages: constraints for the
- 898 post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area,
- 899 northwestern Superior Province, Canada. Geochimica et Cosmochimica Acta, 62, 2979–2995.
- 900 Dumond, G., Goncalves, P., Williams, M.L. and Jercinovic, M.J. (2015). Monazite as a monitor of
- 901 melting, garnet growth and feldspar recrystallization in continental lower crust. Journal of
- 902 Metamorphic Geology, 33, 735–762.
- 903 Engi, M. (2017). Petrochronology based on REE-minerals: monazite, allanite, xenotime, apatite.
- Reviews in Mineralogy and Geochemistry, 83, 365–418.
- 905 Farina, F., and Stevens, G. (2011) Source controlled 87 Sr/86 Sr isotope variability in granitic magmas:
- the inevitable consequence of mineral-scale isotopic disequilibrium in the protolith. Lithos, 122,
 189–200.
- Ferrero, S., Bartoli, O., Cesare, B., Salvioli-Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C., and
 Battiston, S. (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks.
- 910 Journal of Metamorphic Geology, 30, 303–322.
- Ferrero, S., Bodnar, R.J., Cesare, B., and Viti, C. (2011) Re-equilibration of primary fluid inclusions in
 peritectic garnet from metapelitic enclaves, El Hoyazo, Spain. Lithos, 124, 117–131.
- 913 Ferrero, S., Braga, R., Berkesi, M., Cesare, B., and Laridhi Ouazaa, N. (2014) Production of
- 914 metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La
- 915 Galite Archipelago, central Mediterranean. Journal of Metamorphic Geology, 32, 209–225.

916	Ferrero, S.,	Wunder, I	3., Walczak, K.	, O'Brien, P.J.,	, and Ziemann,	M.A. (20	15) Preserved near
-----	--------------	-----------	-----------------	------------------	----------------	----------	--------------------

- 917 ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology, 43, 447-918 450.
- 919 Forshaw, J.B., Waters, D.J., Pattison, D.R.M., Palin, R.M., and Gopon, P. (2019) A comparison of
- 920 observed and thermodynamically predicted phase equilibria and mineral compositions in mafic 921 granulites. Journal of Metamorphic Geology, 37, 153–179.
- 922 Green, T.H. and Watson, E.B. (1982). Crystallization of apatite in natural magmas under high pressure,
- 923 hydrous conditions, with particular reference to 'orogenic'rock series. Contributions to
- 924 Mineralogy and Petrology, 791, 96–105.
- Grunsky, E.C. (2010) The interpretation of geochemical survey data. Geochemistry: Exploration, 925 926 Environment, Analysis, 10, 27–74.
- 927 Hammerli, J., Kemp, A.I.S. and Spandler, C. (2014). Neodymium isotope equilibration during crustal 928 metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth and 929 Planetary Science Letters, 392, 133–142.
- 930 Harris, N., Vance, D., and Ayres, M. (2000) From sediment to granite: timescales of anatexis in the 931 upper crust. Chemical Geology, 162, 155-167.
- 932 Harrison, T.M., and Watson, E.B. (1984) The behavior of apatite during crustal anatexis: equilibrium 933 and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1467–1477.
- 934 Hermann, J., and Rubatto, D. (2003) Relating zircon and monazite domains to garnet growth zones: age
- 935 and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of
- 936 Metamorphic Geology, 21, 833–852.
- Holtz, F., and Johannes, W. (1991) Genesis of Peraluminous Granites I. Experimental Investigation of 937
- 938 Melt Compositions at 3 and 5 kb and Various H2O Activities. Journal of Petrology, 32, 935–958.

939	Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.O. and Spandler, C. (2008). Prograde metamorphic
940	sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-
941	monazite-xenotime phase relations from 250 to 610 C. Journal of Metamorphic Geology, 26,
942	509–526.
943	Johnson, T.E., Clark, C., Taylor, R.J., Santosh, M., and Collins, A.S. (2015) Prograde and retrograde
944	growth of monazite in migmatites: An example from the Nagercoil Block, southern India.
945	Geoscience Frontiers, 6, 373–387.
946	Kelsey, D.E., Clark, C. and Hand, M. (2008). Thermobarometric modelling of zircon and monazite
947	growth in melt - bearing systems: Examples using model metapelitic and metapsammitic
948	granulites. Journal of Metamorphic Geology, 26, 199-212.
949	Kirkland, C.L., Yakymchuk, C., Szilas, K., Evans, N., Hollis, J., McDonald, B., and Gardiner, N.J.
950	(2018) Apatite: a U-Pb thermochronometer or geochronometer? Lithos, 318–319, 143–157.
951	Kohn, M.J. and Malloy, M.A. (2004). Formation of monazite via prograde metamorphic reactions
952	among common silicates: implications for age determinations. Geochimica et Cosmochimica
953	Acta, 68, 101–113.
954	Korhonen, F.J., Saito, S., Brown, M., Siddoway, C.S., and Day, J.M.D. (2010) Multiple Generations of
955	Granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: Implications for
956	Polyphase Intracrustal Differentiation in a Continental Margin Setting. Journal of Petrology, 51,
957	627–670.
958	Korhonen, F.J., Brown, M., Clark, C., Foden, J.D., and Taylor, R. (2015) Are granites and granulites
959	consanguineous? Geology, 43, 991–994.
960	London, D. (1992) Phosphorus in S-type magmas; the P 2 O 5 content of feldspars from peraluminous
961	granites, pegmatites, and rhyolites. American Mineralogist, 77(, 126-145.

962	London, D., Morgan, G.B., Babb, H.A., and Loomis, J.L. (1993) Behavior and effects of phosphorus in
963	the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O). Contributions to
964	Mineralogy and Petrology, 113, 450–465.
965	London, D., Wolf, M.B., Morgan, G.B., and Garrido, M.G. (1999) Experimental silicate-phosphate
966	equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at
967	Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40, 215-240.
968	London, D., Morgan, G.B., and Acosta-Vigil, A. (2012) Experimental simulations of anatexis and
969	assimilation involving metapelite and granitic melt. Lithos, 153, 292–307.
970	Morgan, G.B., and London, D. (2005a) Effect of current density on the electron microprobe analysis of
971	alkali aluminosilicate glasses. American Mineralogist, 90, 1131–1138.
972	Mysen, B.O. (1998) Phosphorus solubility mechanisms in haplogranitic aluminosilicate glass and melt:
973	effect of temperature and aluminum content. Contributions to Mineralogy and Petrology, 133,
974	38–50.
975	Mysen, B.O., Ryerson, F.J., and Virgo, D. (1981) The structural role of phosphorus in silicate melts.
976	American Mineralogist, 66, 106–117.
977	Nandakumar, V., & Harley, S. L. (2019). Geochemical signatures of mid-crustal melting processes and
978	heat production in a hot orogen: The Kerala Khondalite Belt, Southern India. Lithos, 324, 479-
979	500.
980	Palarea-Albaladejo, J., and Martín-Fernández, J.A. (2013) Values below detection limit in compositional
981	chemical data. Analytica Chimica Acta, 764, 32–43.
982	Palarea-Albaladejo, J., and Martín-Fernández, J.A. (2015) zCompositions — R package for multivariate
983	imputation of left-censored data under a compositional approach. Chemometrics and Intelligent
984	Laboratory Systems, 143, 85–96.

985	Pan, Y., and Fleet, M.E. (2002) Compositions of the Apatite-Group Minerals: Substitution Mechanisms
986	and Controlling Factors. Reviews in Mineralogy and Geochemistry, 48, 13–49.

- Pattison, D.R., De Capitani, C., and Gaidies, F. (2011) Petrological consequences of variations in
 metamorphic reaction affinity. Journal of Metamorphic Geology, 29, 953–977.
- Piccoli, P.M., and Candela, P.A. (2002) Apatite in igneous systems. Reviews in Mineralogy and
 Geochemistry, 48, 255–292.
- 991 Pichavant, M., Montel, J.-M., and Richard, L.R. (1992) Apatite solubility in peraluminous liquids:
- 992 Experimental data and an extension of the Harrison-Watson model. Geochimica et
- 993 Cosmochimica Acta, 56, 3855–3861.
- Pyle, J.M. and Spear, F.S. (1999). Yttrium zoning in garnet: coupling of major and accessory phases
 during metamorphic reactions. Geological Materials Research, 1, 1–49.
- 996 Roedder, E. (1984). Fluid Inclusions. Reviews in Mineralogy 12, 1–644.
- 997 Sawyer, E.W. (1987) The Role of Partial Melting and Fractional Crystallization in Determining
- 998 Discordant Migmatite Leucosome Compositions. Journal of Petrology, 28, 445–473.
- 999 Sawyer, E.W. (2008) Atlas of migmatites. NRC Research Press, Ottawa. pp 387.
- Sha, L.K. and Chappell, B.W. (1999). Apatite chemical composition, determined by electron microprobe
 and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite
- 1002 petrogenesis. Geochimica et Cosmochimica Acta, 63, 3861–3881.
- 1003 Shrestha, S., Larson, K.P., Duesterhoeft, E., Soret, M. and Cottle, J.M. (2019). Thermodynamic
- 1004 modelling of phosphate minerals and its implications for the development of PTt histories: A
- 1005 case study in garnet-monazite bearing metapelites. Lithos 334, 141–160.
- 1006 Spear, F.S. (2010) Monazite–allanite phase relations in metapelites. Chemical Geology, 279, 55–62.

- Spear, F.S. and Pyle, J.M. (2002). Apatite, monazite, and xenotime in metamorphic rocks. Reviews in
 Mineralogy and Geochemistry, 48, 293–335.
- 1009 Spear, F.S., and Pyle, J.M. (2010) Theoretical modeling of monazite growth in a low-Ca metapelite.
- 1010 Chemical Geology, 273, 111–119.
- 1011 Stepanov, A.S., Hermann, J., Rubatto, D., and Rapp, R.P. (2012) Experimental study of monazite/melt
- 1012 partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical
- 1013 Geology, 300, 200–220.
- 1014 Tollari, N., Toplis, M.J., and Barnes, S.J. (2006) Predicting phosphate saturation in silicate magmas: An
- 1015 experimental study of the effects of melt composition and temperature. Geochimica et
- 1016 Cosmochimica Acta, 70, 1518–1536.
- 1017 Toplis, M., and Dingwell, D. (1996) The variable influence of P 2 O 5 on the viscosity of melts of
- 1018 differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate
- 1019 melts. Geochimica et Cosmochimica Acta, 60, 4107–4121.
- 1020 Villaros, A., Stevens, G., Moyen, J.-F., and Buick, I.S. (2009) The trace element compositions of S-type
- 1021 granites: evidence for disequilibrium melting and accessory phase entrainment in the source.
- 1022 Contributions to Mineralogy and Petrology, 158, 543–561.
- 1023 Villaseca, C., Romera, C.M., De la Rosa, J. and Barbero, L. (2003). Residence and redistribution of
- 1024 REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major
 1025 phases in peraluminous granulites of central Spain. Chemical Geology, 200, 293–323.
- Watson, E.B. (1979) Apatite saturation in basic to intermediate magmas. Geophysical Research Letters,
 6, 937–940.
- 1028 Watson, E.B. (1980). Apatite and phosphorus in mantle source regions: an experimental study of
- apatite/melt equilibria at pressures to 25 kbar. Earth and Planetary Science Letters, 51, 322–335.

- Watson, E.B., and Green, T.H. (1981) Apatite/liquid partition coefficients for the rare earth elements
 and strontium. Earth and Planetary Science Letters, 56, 405–421.
- 1032 Watt, G.R. and Harley, S.L. (1993). Accessory phase controls on the geochemistry of crustal melts and
- restites produced during water-undersaturated partial melting. Contributions to Mineralogy and
 Petrology, 114, 550–566.
- Webster, J.D., and Piccoli, P.M. (2015) Magmatic apatite: a powerful, yet deceptive, mineral. Elements,
 1036 11, 177–182.
- Weinberg, R.F. (2016) Himalayan leucogranites and migmatites: nature, timing and duration of anatexis.
 Journal of Metamorphic Geology, 34, 821–843.
- White, R.W., Stevens, G., and Johnson, T.E. (2011) Is the crucible reproducible? Reconciling melting
 experiments with thermodynamic calculations. Elements, 7, 241–246.
- 1041 Wolf, M.B. and London, D. (1994). Apatite dissolution into peraluminous haplogranitic melts: an
- 1042 experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58,
 1043 4127–4145.
- 1044 Wolf, M.B. and London, D. (1995). Incongruent dissolution of REE-and Sr-rich apatite in peraluminous
 - granitic liquids: Differential apatite, monazite, and xenotime solubilities during anatexis.
 American Mineralogist, 80, 765–775.
 - Wolfram, L.C., Weinberg, R.F., Hasalová, P. and Becchio, R. (2017). How Melt Segregation Affects
 Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina. Journal of Petrology,
 58, 2339–2364.
 - Yakymchuk, C. (2017) Behaviour of apatite during partial melting of metapelites and consequences for
 prograde suprasolidus monazite growth. Lithos, 274–275, 412–426.

- Yakymchuk, C., and Brown, M. (2014) Consequences of open-system melting in tectonics. Journal of
 the Geological Society, 171, 21–40.
- 1054 Yakymchuk, C., and Brown, M. (2019) Divergent behaviour of Th and U during anatexis: Implications
- 1055 for the thermal evolution of orogenic crust. Journal of Metamorphic Geology.
- 1056 https://doi.org/10.1111/jmg.12469
- 1057 Yakymchuk, C., Clark, C., and White, R.W. (2017) Phase Relations, Reaction Sequences and
- 1058 Petrochronology. Reviews in Mineralogy and Geochemistry, 83, 13–53.
- Yakymchuk, C., Kirkland, C.L., and Clark, C. (2018) Th/U ratios in metamorphic zircon. Journal of
 Metamorphic Geology, 36, 715–737.
- 1061 Yakymchuk, C., Zhao, W., Wan, Y., Lin, S., and Longstaffe, F.J. (2019). Fluid-present anatexis of
- 1062 Neoarchean tonalite and amphibolite in the Western Shandong Province. Lithos, 326–327, 110–
 1063 124.
- 1064 Zeck, H.P., Williams, I., 2002. Inherited and magmatic zircon from Neogene Hoyazo cordierite dacite,
- SE Spain-Anatectic source rock provenance and magmatic evolution. Journal of Petrology 43,
 1066 1089–1104.
- 1067 Zeng, L., Saleeby, J.B., and Asimow, P. (2005) Nd isotope disequilibrium during crustal anatexis: A
- record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California.
 Geology, 331, 53–56.
- 1070 Zhang, Y., Ni, H., Chen, Y. (2010). Diffusion data in silicate melts. In: Zhang, Y., Cherniak, D.J.
- 1071 (Eds.), Diffusion in Minerals and Melts. Reviews in Mineralogy and Geochemistry 72,
 1072 311–408.
- 1073
- 1074

1075	Figure captions
1076	Figure 1. <i>P</i> – <i>T</i> diagram showing the approximate metamorphic conditions recorded by trapped
1077	nanogranitoids and melt inclusions and the $P-T$ conditions of experimental runs. The El Hoyazo
1078	samples represent melt inclusions in peritectic garnet in enclaves and the other samples represent
1079	rehomogenized nanogranitoid and glassy melt inclusions hosted by garnet in migmatites and
1080	granulites. Experimental studies: WL: Wolf and London (1994), P92: Pichavant et al. (1992),
1081	GW82: Green and Watson (1982). HW: Harrison and Watson (1984), W80: Watson (1980).
1082	KKB: Kerala Khondalite Belt.
1083	
1084	Figure 2. Concentration of P ₂ O ₅ in nanogranitoids (data from Bartoli et al. 2016) as a function of
1085	the concentration of SiO_2 in melt and the ASI value of the melt. Nanogranitoid compositions are
1086	compared with the results of apatite solubility models (dashed lines) of Harrison and Watson
1087	(1984; HW84) and Wolf and London (1994; WL94). Ronda1 have homogenization temperatures
1088	of 660–700°C whereas Ronda2 have homogenization temperatures of ~850°C (see Bartoli et al.
1089	2016).
1090	
1091	Figure 3. Concentration of the measured P_2O_5 of glassy melt inclusions and rehomogenized
1092	nanogranitoid versus the predicted P2O5 concentrations using various apatite solubility
1093	expressions, major element compositions (SiO ₂ , Al ₂ O ₃ , Na ₂ O, K ₂ O and CaO measured with
1094	electron probe microanalysis), and estimated temperatures of entrapment of individual
1095	rehomogenized nanogranitoids and glassy melt inclusions. Solubility expressions are from: (a)
1096	HW84: Harrison and Watson (1984), (b) B92: Bea et al. (1992), (c) P92: Pichavant et al. (1992),
1097	and (d) WL94: Wolf and London (1994). The red line illustrates where the predicted and

1098	measured compositions are the same. For (d), some results are not included (La Galite and some
1099	data from the Bohemian Massif) because they have aluminum saturation values <1.1 that are
1100	outside the calibration range of the WL94 expression. Most P2O5 values are underestimated by
1101	the HW84 and B92 expressions. Ronda1 have homogenization temperatures of 660-700°C
1102	whereas Ronda2 have homogenization temperatures of ~850°C (see Bartoli et al. 2016).
1103	
1104	Figure 4. Log-normalized histograms of the quotient of the measured concentration of P_2O_5 in
1105	nanogranitoid inclusions divided by the P_2O_5 concentration in melt predicted from various
1106	solubility expressions using the measured compositions of SiO ₂ , Al ₂ O ₃ , Na ₂ O, K ₂ O and CaO and
1107	estimated temperatures of entrapment of individual rehomogenized nanogranites and glassy melt
1108	inclusions. (a) HW84: Harrison and Watson (1984), (b) B92: Bea et al. (1992), (c) P92:
1109	Pichavant et al. (1992), and (d) WL94: Wolf and London (1994). Most of the nanogranite
1110	inclusions measured from the Barun gneiss have ASI (aluminum saturation index) values of $<$
1111	1.1 and are not plotted in (d).
1112	
1113	Figure 5. Box-and-whisker plot of the P ₂ O ₅ concentrations in nanogranitoids from different
1114	locations arranged by approximate entrapment temperatures (from Bartoli et al. 2016). On the
1115	box-and-whisker plots, the whiskers extend to the lowest and highest datum inside 1.5 times the
1116	interquartile range and outliers (represented by crosses) are outside of this range. The number of
1117	data points are shown in italics above each box. Samples from the highest temperature samples
1118	have the lowest concentrations of P_2O_5 , with the exception of the La Galite metatonalite samples.
1119	

1120	Figure 6. Amount of apatite remaining relative to the amount at the solidus as a function of $P-T$
1121	for an average metapelite (modified from Yakymchuk, 2017). The bulk rock composition is 0.10
1122	wt.% P_2O_5 . Red dots represent the approximate $P-T$ conditions from samples with measured
1123	nanogranitoid and melt inclusion compositions.
1124	
1125	Figure 7. Schematic diagram illustrating how the concentration of P ₂ O ₅ in melt is expected to
1126	increase with T until apatite is completely exhausted (or removed from the system as inclusions).
1127	After this point, further melting will dilute the melt in P_2O_5 .
1128	
1129	Figure 8. Difference between measured concentration of P_2O_5 (wt.%) and concentrations
1130	predicted by various apatite solubility models combined with measured concentrations of major
1131	elements and estimated entrapment temperatures of individual melt inclusions in the El Hoyazo
1132	enclaves. (a) Difference between measured and predicted concentrations of P_2O_5 versus
1133	Aluminium Saturation Index (ASI). (b) Difference between measured and predicted
1134	concentrations of P2O5 versus wt.% SiO2
1135	
1136	Figure 9. Compositions of melt inclusions in plagioclase and garnet from the El Hoyazo
1137	enclaves. Concentrations of P_2O_5 in the melt inclusions are slightly higher in garnet (about 0.1
1138	wt.%), Al ₂ O ₃ is slightly lower in melt inclusions in plagioclase (2 wt.%) but, SiO ₂ is slightly

1139 higher in melt inclusions in plagioclase (2 wt.%).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

ways consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWor