Revision 1 Al and Si Diffusion in Rutile D.J. Cherniak\*, E.B. Watson Department of Earth and Environmental Sciences Rensselaer Polytechnic Institute Troy, NY 12180 USA \*Corresponding author: D.J. Cherniak Department of Earth & Environmental Sciences Rensselaer Polytechnic Institute Troy, NY 12180 chernd@rpi.edu

| 45<br>46<br>47 | Abstract                                                                                                                                                  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48             | Diffusion of Al and Si under anhydrous conditions has been measured in synthetic and natural                                                              |
| 49             | rutile. Experiments used Al <sub>2</sub> O <sub>3</sub> or Al <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub> powder mixtures for Al diffusant sources, and |
| 50             | SiO <sub>2</sub> -TiO <sub>2</sub> powder mixtures or quartz-rutile diffusion couples for Si. Experiments were run in air                                 |
| 51             | in crimped Pt capsules, or in sealed silica glass ampoules with solid buffers (to buffer at NNO or                                                        |
| 52             | IW). Al profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction                                                                    |
| 53             | $^{27}$ Al(p, $\gamma$ ) $^{28}$ Si. Rutherford Backscattering Spectrometry (RBS) was used to measure Si diffusion                                        |
| 54             | profiles, with RBS also used in measurements of Al to complement NRA profiles. We determine                                                               |
| 55             | the following Arrhenius relations from these measurements:                                                                                                |
| 56<br>57       | For Al diffusion parallel to c, for experiments buffered at NNO, over the temperature range                                                               |
| 58             | 1100-1400°C:                                                                                                                                              |
| 59<br>60       | $D_{Al} = 1.21 \times 10^{-2} \exp(-531 \pm 27 \text{ kJ mol}^{-1}/\text{RT}) \text{ m}^2\text{s}^{-1}$                                                   |
| 61             | For Si diffusion parallel to c, for both unbuffered and NNO-buffered experiments, over the                                                                |
| 62             | temperature range 1100-1450°C:                                                                                                                            |
| 63             | $D_{Si} = 8.53 \times 10^{-13} \exp(-254 \pm 31 \text{ kJ mol}^{-1}/\text{RT}) \text{ m}^2\text{s}^{-1}$                                                  |
| 64<br>65       | Diffusion normal to (100) is similar to diffusion normal to (001) for both Al and Si, indicating                                                          |
| 66             | little diffusional anisotropy for these elements. Diffusivities measured for synthetic and natural                                                        |
| 67             | rutile are in good agreement, indicating that these diffusion parameters can be applied in                                                                |
| 68             | evaluating diffusivities in rutile in natural systems Diffusivities of Al and Si for experiments                                                          |
| 69             | buffered at IW are faster (by a half to three-quarters of a log unit) than those buffered at NNO.                                                         |
| 70             | Si and Al are among the slowest-diffusing species in rutile measured thus far. Diffusivities of                                                           |
| 71             | Al and Si are significantly slower than diffusion of Pb, and slower than diffusion of tetravalent                                                         |

| 72                                                                         | Zr and Hf and pentavalent Nb and Ta. These data indicate that Al compositional information will                                       |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 73                                                                         | be strongly retained in rutile, providing evidence for the robustness of the recently developed Al                                    |
| 74                                                                         | in rutile thermobarometer. For example, at 900°C, Al compositional information would be                                               |
| 75                                                                         | preserved over $\sim$ 3 Gyr in the center of 250 $\mu$ m radius rutile grains, but Zr compositional                                   |
| 76                                                                         | information would be preserved for only about 300,000 years at this temperature. Al-in-rutile                                         |
| 77                                                                         | compositions will also be much better preserved during subsolidus thermal events subsequent to                                        |
| 78                                                                         | crystallization than those for Ti-in-quartz and Zr-in-titanite crystallization thermometers.                                          |
| 79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>88<br>89<br>90 | Keywords: rutile, diffusion, aluminum, silicon, Rutherford Backscattering, Nuclear Reaction<br>Analysis, geothermometry, geobarometry |

## 91 Introduction

| 92  | Rutile, found in a variety of geological settings, can incorporate significant amounts of                         |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 93  | trivalent, divalent and pentavalent cations, including several high-field strength elements, with                 |
| 94  | concentrations up to tens of percent (e.g., Vlassopoulos et al., 1993). The geochemical behavior                  |
| 95  | of these trace and minor elements in rutile can offer insight into subduction zone processes (e.g,                |
| 96  | Ewing and Müntener, 2018; Ryerson and Watson, 1987; Zack et al., 2002; Brenan et al., 1994;                       |
| 97  | Stalder et al, 1998; Foley et al, 2000); HFSE with multiple valence states incorporated in rutile                 |
| 98  | also have the potential to provide information on fO <sub>2</sub> conditions (e.g., Liu et al., 2014; Guo et al., |
| 99  | 2017). Since rutile tends to remain stable during sedimentary and diagenetic processes, its trace                 |
| 100 | element signatures can reveal information about provenance (e.g. Zack, et la., 2002; Morton et                    |
| 101 | al., 1999), and may be used in geospeedometry (e.g., Cruz-Uribe et al., 2014; Kohn et al., 2016).                 |
| 102 | The Zr-in-rutile geothermobarometer (Degeling, 2003; Zack, et al., 2004b; Watson et al. 2006;                     |
| 103 | Tomkins et al. 2007) has been increasingly applied in a range of studies to assess crystallization                |
| 104 | temperatures and/or pressures (e.g., Mitchell and Harley, 2017; Pape et al., 2016; Ewing et al.,                  |
| 105 | 2013; Taylor-Jones and Powell, 2015; Tual et al., 2018). Rutile is also used as a U-Pb                            |
| 106 | geochronometer (e.g., Corfu and Andrews, 1986; Corfu and Muir, 1989; Mezger et al., 1991;                         |
| 107 | 1989; Schandl et al., 1990; Wong et al., 1991; Davis, 1997; Smye and Stockli, 2014).                              |
| 108 | In this work, we report results for Si and Al diffusion in natural and synthetic rutile, with                     |
| 109 | evaluation of the effects of oxygen fugacity and crystallographic orientation on diffusion. These                 |
| 110 | data supplement and complement earlier measurements of diffusion of trace and minor elements                      |
| 111 | in rutile, and may permit greater general understanding of diffusion-controlled processes in                      |
| 112 | rutile.                                                                                                           |

| 113 | Most notably, recent experimental work (Hoff and Watson, 2018) has shown the potential for            |
|-----|-------------------------------------------------------------------------------------------------------|
| 114 | use of Al concentrations in rutile as a geothermobarometer. Al concentrations in rutile may also      |
| 115 | affect diffusion of other species, such as Cr (e.g., Sasaki et al., 1985). Taylor-Jones and Powell    |
| 116 | (2015) have proposed that slow-diffusing Si in rutile may lead to the slowing of Zr diffusion,        |
| 117 | resulting in higher retentivity of Zr and higher closure temperatures. However, Kohn et al.           |
| 118 | (2016) have argued against the hypothesis of Zr coupling with slower-diffusing Si, asserting          |
| 119 | instead that high Zr contents (and thus high Zr-in-rutile temperatures) observed in UHT rocks are     |
| 120 | a consequence of the degree to which the surfaces of rutile crystals are able to maintain             |
| 121 | equilibrium with matrix minerals, including zircon and baddeleyite. Despite possible                  |
| 122 | complexities in natural systems, measurements of Si diffusion in rutile are of value given the        |
| 123 | ubiquity of silicon in geologic systems, as well as the utility of these diffusivities in             |
| 124 | understanding processes such as the exsolution of zircon needles in rutile (e.g., Pepe et al, 2016).  |
| 125 | Slightly reduced and doped rutiles, as semiconducting materials, have been used in a range of         |
| 126 | technological applications. Al-doped rutile has been developed as an optical material (e.g, Hatta     |
| 127 | et al., 1996); Si can also be added to rutile to tailor optical properties (Gonzalez-Elipe et al,     |
| 128 | 2006; Demiryont, 1985). Al is a common additive to TiO <sub>2</sub> pigments to enhance photochemical |
| 129 | stability, and may have large effects on the conductivity of rutile and its polymorphs (Bak et al.,   |
| 130 | 2003), and on crystal growth and transformation kinetics (Gesenhues, 1997; Gesenhues and              |
| 131 | Rentschler, 1999; Karvinen, 2003). Understanding diffusion of key dopant species in rutile can        |
| 132 | assist in refining production processes and provide constraints on the long-term integrity of these   |
| 133 | materials.                                                                                            |
|     |                                                                                                       |

134

## 136 **Experimental Procedure and Materials**

137 The majority of diffusion experiments in this study were run on synthetic rutile. The synthetic 138 rutile, from the MTI Corporation, was purchased in the form of wafers polished on one side, in 139 either (001) or (100) orientation. To explore the effects of the presence of trace and minor 140 elements on diffusion, some Si diffusion experiments were run using a natural rutile. The natural 141 rutile, from Pennsylvania, was from the same specimen as used in our earlier studies of Pb, Hf 142 and Zr diffusion in rutile (Cherniak et al., 2007a; Cherniak, 2000). Minor and trace element 143 concentrations from LA-ICPMS analyses of the rutile (based on averages of 3 or 6 point analyses 144 on synthetic and natural rutile grains, respectively) are presented in Table 1. The wafers of 145 synthetic rutile were cut into square pieces, about 2 mm on a side. The natural rutile was cut 146 normal to c into slabs about 0.5 mm thick, polished with SiC papers and alumina powders down 147 to 0.3  $\mu$ m, and finished with a chemical polish using colloidal silica. 148 Si diffusion experiments were conducted using quartz-rutile diffusion couples, or with powder 149 sources containing SiO<sub>2</sub>. The powder sources used were either dried SiO<sub>2</sub> powder, or a mixture 150 of TiO<sub>2</sub> and SiO<sub>2</sub> powders in 3:1 (by wt.) ratio, ground under ethanol, dried, and heated in a Pt 151 crucible for one day at 1250°C. The SiO<sub>2</sub>-TiO<sub>2</sub> powder sources worked well for experiments run 152 in air, but the buffered experiments run in sealed silica glass capsules showed significant Si-rich 153 material clinging to rutile sample surfaces following diffusion anneals, which precluded 154 successful analysis of these samples. As a consequence, only quartz-rutile diffusion couples were 155 used in buffered experiments. 156 For the Al diffusion experiments, sources of diffusant were Al<sub>2</sub>O<sub>3</sub> powder, or mixtures of

- 157  $TiO_2$  and  $Al_2O_3$  powders, in either 3:1 or 10:1 (by wt.) ratios. The  $TiO_2$ - $Al_2O_3$  powder mixtures
- 158 were ground under ethanol, dried, and heated in Pt crucibles for one day at 1250°C. To explore

| 159 | potential effects of coupled substitutions on Al diffusion, an experiment was run which                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 160 | incorporated Nb into the source material. For this source, the TiO <sub>2</sub> -Al <sub>2</sub> O <sub>3</sub> 10:1 wt. ratio powder |
| 161 | mixture was combined with Nb <sub>2</sub> O <sub>5</sub> powder in a weight ratio of 100:1.                                           |
| 162 | For powder-source experiments, rutile crystals were surrounded by the source powders in Pt                                            |
| 163 | capsules, and capsules crimped shut. Diffusion couples were created by placing polished faces of                                      |
| 164 | rutile and synthetic quartz slabs in contact, tying the couple together with Pt wire, and wrapping                                    |
| 165 | the couple in Pt mesh. For experiments run under buffered conditions, the Pt capsules or                                              |
| 166 | diffusion couples were placed inside a silica glass ampoule with another crimped Pt capsule                                           |
| 167 | containing the buffer material (mixtures of Ni metal and nickel oxide powders to buffer at NNO,                                       |
| 168 | or FeO powder and Fe flakes to buffer at IW); silica glass chips were used to physically separate                                     |
| 169 | the samples and buffer capsules inside the silica glass ampoule. The sample-buffer assemblies                                         |
| 170 | were then sealed in the silica ampoule under vacuum.                                                                                  |
| 171 | All experiments were run in one-atmosphere tube furnaces with MoSi <sub>2</sub> heating elements, with                                |
| 172 | sample temperatures monitored by type S (Pt-Pt10%Rh) thermocouples with temperature                                                   |
| 173 | uncertainties of ~±2°C. Experiments were then removed from the furnace and allowed to cool in                                         |
| 174 | air. The rutile crystals were extracted from capsules and cleaned ultrasonically in distilled $\mathrm{H_{2}O}$                       |
| 175 | and ethyl alcohol. Experimental conditions and durations for Si and Al diffusion experiments                                          |
| 176 | are presented in Tables 2 and 3.                                                                                                      |
| 177 | Time-series studies were performed for both Al and Si diffusion in order to establish that the                                        |
| 178 | measured concentration profiles are due to volume diffusion and are not a result of other                                             |
| 179 | processes such as surface reaction that could lead to enhanced concentrations of the diffusant in                                     |

180 the near-surface region. For these time series, a set of Si diffusion experiments was performed at

181 1300°C for experiments ranging from 19 hours to one week in duration, and a set of Al diffusion
182 experiments at 1250°C for 1 to 6 days.

183

## 184 Nuclear Reaction Analysis (NRA) of Al

185 The Al diffusion experiments were analyzed using nuclear reaction analysis (NRA) with the reaction  ${}^{27}\text{Al}(p,\gamma){}^{28}\text{Si}$ . These analyses were performed at the Ion Beam Laboratory at the 186 187 University at Albany, using proton beams produced by the Dyamitron accelerator. For Al 188 profiling, the 992 keV resonance of the reaction was employed, with a bismuth germanate 189 (BGO) detector used to detect gamma rays produced in the reaction (Cherniak, 1995; Cherniak 190 and Watson, 1992; Tailby et al., 2018). Energy steps of 1.0 - 0.5 keV for the incident proton 191 beam were taken near the resonance energy to profile Al at depths near the sample surface, with 192 larger energy steps (2-5 keV) at greater depths (above  $\sim 150$  nm). Spectra from untreated 193 specimens of rutile were also recorded at each energy step to evaluate background levels in the 194 gamma energy region of interest, and gamma spectra of Al foil were collected as a standard to 195 convert gamma yields into Al concentrations for rutile samples. Typical detection limit for 196 analytical conditions used in this work is ~100 ppm atomic. Depth scales for the Al profiles were 197 calculated from the energy difference between the incident proton beam and the resonance 198 energy, and by the stopping power (energy loss of the protons as a function of depth in the 199 material); stopping powers used in depth calculations were determined with the software SRIM 200 (Ziegler and Biersack, 2006).

201

202 **RBS analysis** 

| 203 | Si diffusion experiments were analyzed with RBS. In addition, Al diffusion experiments were                   |
|-----|---------------------------------------------------------------------------------------------------------------|
| 204 | measured with RBS to complement the NRA analyses described above. RBS has been used as                        |
| 205 | the primary analytical method in many of our diffusion studies, including measurements of Pb,                 |
| 206 | Zr and Hf diffusion in rutile (Cherniak et al., 2007a; Cherniak, 2000). The analytical procedures             |
| 207 | used here are similar, with a ${}^{4}\text{He}^{+}$ incident beam of 2 or 3 MeV energy used for analysis. RBS |
| 208 | spectra were converted to Si and Al concentration profiles using procedures similar to those                  |
| 209 | described in other work (e.g., Cherniak, 1993). Si (and Al) signals rest on those from He                     |
| 210 | backscattered from Ti in the sample, resulting in high backgrounds, so detection limits are on                |
| 211 | order of a few tenths of an atomic percent, but Si concentrations are relatively high in the                  |
| 212 | samples (up to a few % atomic, at the highest temperatures of the experiments), so peaks can be               |
| 213 | well-resolved from background signals. For Al, in cases where both RBS and NRA                                |
| 214 | measurements of samples were made (as discussed below), diffusivities agreed within                           |
| 215 | experimental uncertainties.                                                                                   |
| 216 |                                                                                                               |

## 217 Fitting of Depth Profiles

218 RBS and NRA depth profiles were fit with a model to determine the diffusion coefficient (D). Diffusion is modeled as simple one-dimensional, concentration independent diffusion in a semi-219 220 infinite medium with a source reservoir maintained at constant concentration (i.e., a 221 complementary error function solution). The rationale for the use of this model has been 222 discussed in previous publications (e.g., Cherniak and Watson, 1992). Diffusivities are evaluated by plotting the inverse of the error function (i.e.,  $erf^{-1}((C_o - C(x,t))/C_o))$  vs. depth (x) in the 223 sample. A straight line of slope  $(4Dt)^{-1/2}$  results if the data conform to a complementary error 224 function solution.  $C_o$ , the surface concentration of diffusant, is independently determined by 225

| 226 | iteratively varying its value until the intercept of the line converges on zero. In Figure 1, typical                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 227 | diffusion profiles for both Al and Si are shown. The uncertainties in concentration and depth                                                       |
| 228 | from each data point (mainly derived from counting statistics and backgrounds in the former and                                                     |
| 229 | RBS detector resolution in the latter) were used to evaluate the uncertainties in the diffusivities                                                 |
| 230 | determined from the fits to the model.                                                                                                              |
| 231 |                                                                                                                                                     |
| 232 | Results                                                                                                                                             |
| 233 | The results for Al diffusion are plotted in Figure 2 and presented in Table 2. Diffusivities                                                        |
| 234 | obtained with NRA and RBS agree within uncertainties. There is little evidence of diffusional                                                       |
| 235 | anisotropy. Al diffusion appears to have a weak negative dependence on oxygen fugacity, with                                                        |
| 236 | diffusivities under IW-buffered conditions about half a log unit higher than those under NNO-                                                       |
| 237 | buffered conditions. Samples run with the 3:1 TiO <sub>2</sub> :Al <sub>2</sub> O <sub>3</sub> source generally have higher surface                 |
| 238 | concentrations than samples run with the 10:1 source (typically 2-6x higher at a given                                                              |
| 239 | temperature under NNO-buffered conditions), but diffusivities agree within experimental                                                             |
| 240 | uncertainty. Surface concentrations of the diffusant also display a broad trend of increasing with                                                  |
| 241 | increasing temperature. For diffusion normal to (001), for experiments buffered at NNO, we                                                          |
| 242 | obtain an activation energy of $531 \pm 27$ kJ mol <sup>-1</sup> and pre-exponential factor of $1.21 \times 10^{-2}$ m <sup>2</sup> s <sup>-1</sup> |

243  $(\log D_o = -1.92 \pm 0.92).$ 

A time series at 1250°C, conducted for Al diffusion in rutile normal to (001), with experiments run for times ranging from 24 hours to more than six days (Figure 4a), results in diffusivities that are consistent within experimental uncertainty, providing evidence that volume diffusion, rather than other phenomena such as surface reaction, is the dominant contributor to the measured diffusion profiles over this range of conditions. No anomalously-shaped profiles

are observed for Al (or Si) that would be suggestive of concentration-dependence of diffusion,

and experiments with sources containing different concentrations of diffusant yield diffusivities

- that agree within experimental uncertainty.
- 252 Diffusion data for Si are plotted in Figure 3 and presented in Table 3. For Si diffusion
- 253 perpendicular to (001) in synthetic rutile under unbuffered conditions, we obtain an activation
- energy of  $275 \pm 45 \text{ kJ mol}^{-1}$  and a pre-exponential factor  $4.41 \times 10^{-12} \text{ m}^2 \text{s}^{-1}$  (log D<sub>o</sub> = -11.36 ±
- 1.38). There is little evidence of diffusional anisotropy when comparing diffusivities normal to
- 256 (100) and (001). For diffusion under NNO-buffered conditions in synthetic rutile, normal to
- 257 (001), an activation energy of  $216 \pm 48$  kJ mol<sup>-1</sup> and a pre-exponential factor  $4.07 \times 10^{-14}$  m<sup>2</sup>s<sup>-1</sup>
- 258 (log D<sub>o</sub> = -13.39 ± 1.62) are obtained. A fit to both the NNO- buffered and unbuffered data

results in an activation energy of  $254 \pm 31$  kJ mol<sup>-1</sup> and a pre-exponential factor  $8.53 \times 10^{-13}$  m<sup>2</sup>s<sup>-1</sup>

260 (log  $D_0 = -12.07 \pm 1.03$ ). Diffusivities of Si in natural rutile under NNO-buffered conditions do

261 not differ significantly from those obtained for NNO-buffered synthetic rutile, indicating that

262 differences in trace and minor element compositions between the synthetic and natural materials

263 have little effect on diffusion, a finding consistent with observations for Hf and Pb diffusion

264 (Cherniak, 2000; Cherniak et al. 2007a). Like Al, Si diffusion exhibits a negative dependence on

265 oxygen fugacity when comparing diffusivities under NNO- and IW-buffered conditions.

As with Al, a time series for Si diffusion in rutile normal to (001) was run, in this case at

267 1300°C for times ranging from 19 hours to a week (Figure 4b). Diffusivities are in agreement

- 268 within experimental uncertainties, suggesting that volume diffusion is the dominant contributor
- to the observed Si diffusion profiles.
- 270
- 271

## 272 Comparison with diffusivities of other elements in rutile and potential diffusion

## 273 mechanisms

274

| 275 | A summary of selected diffusion data for cations in rutile is plotted in Figure 5. Si and Al are                   |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 276 | among the slowest-diffusing species in rutile measured to date. Si diffuses about 6 orders of                      |
| 277 | magnitude slower than Ti. Diffusivities of Al and Si are significantly lower than those of                         |
| 278 | divalent cations, including the large divalent cations Pb and Ba (Cherniak, 2000; Nakayama and                     |
| 279 | Sasaki, 1963) and other trivalent cations, including Sc and Cr (Sasaki et al., 1985). Al and Si also               |
| 280 | diffuse more slowly than tetravalent Zr and Hf and pentavalent Nb and Ta (Marschall et al.,                        |
| 281 | 2013; Dohmen et al., 2018; Cherniak et al., 2007a). For example, Si diffusion is about 2 orders                    |
| 282 | of magnitude slower than the Zr diffusivities determined by Cherniak et al. (2007a), and about 3                   |
| 283 | orders of magnitude slower than Pb diffusion; Al diffusion is about 6 orders of magnitude slower                   |
| 284 | than Nb diffusion, and 9 orders of magnitude slower than Cr diffusion (Sasaki et al., 1985).                       |
| 285 | Trivalent and more highly charged cations, which may migrate via a coupled                                         |
| 286 | interstitial/interstitialcy mechanism (Zhu et al., 2017), and divalent cations of large ionic radius               |
| 287 | such as Ba (Nakayama and Sasaki, 1963) and Pb (Cherniak, 2000), do not show pronounced                             |
| 288 | diffusional anisotropy. This contrasts with the significant diffusional anisotropy of small divalent               |
| 289 | cations, which travel interstitially through open channels in the rutile structure along the c-axis                |
| 290 | (Sasaki et al., 1985), a mechanism consistent with findings from DFT calculations (Zhu et al.,                     |
| 291 | 2017).                                                                                                             |
| 292 | Al <sup>3+</sup> predominately substitutes for Ti <sup>4+</sup> on normal octahedral sites at lower pressures, but |
| 293 | higher pressures induce the incorporation of $Al^{3+}$ into octahedral interstices of the rutile structure         |

294 (Escudero et al., 2012). Al solubility increases with increasing temperature (Stebbins, 2007) and

| 295 | pressure, with 10 wt% Al <sub>2</sub> O <sub>3</sub> in rutile at 1300°C and 7 GPa (Escudero et al., 2012), with                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| 296 | concentrations at 1-atm in the range of 1-2 wt% Al <sub>2</sub> O <sub>3</sub> (Escudero et al., 2012; Slepetys and                |
| 297 | Vaughan, 1969); these values are broadly consistent with surface concentrations determined for                                     |
| 298 | the lower-temperature experiments using the 10:1 TiO <sub>2</sub> :Al <sub>2</sub> O <sub>3</sub> source. For samples with up to 1 |
| 299 | wt % Al <sub>2</sub> O <sub>3</sub> , Al is found in ordered, isolated octahedral (Ti sites), while at higher concentrations,      |
| 300 | Al predominates in disordered octahedral sites, with possible contributions from both Ti sites                                     |
| 301 | with Al neighbors and interstitials (Stebbins, 2007). The substitution of Al in Ti sites may be                                    |
| 302 | compensated for by oxygen vacancies (Hatta et al., 1996; Islam et al., 2007); while interstitial                                   |
| 303 | substitutions are possible, substitution on Ti lattice sites is energetically favorable. The larger                                |
| 304 | size of Al compared with Si, along with the potential for migrating via defect complexes to                                        |
| 305 | preserve local charge balance, may lead to the higher activation energy for diffusion observed for                                 |
| 306 | Al. In contrast, because of its small size compared with Ti, Si may have an off-center position in                                 |
| 307 | the rutile lattice, and may also occupy interstitial positions (Golden et al., 2015), which could                                  |
| 308 | contribute to the lower activation energy for Si diffusion. As with Al, Si solubilities in rutile                                  |
| 309 | increase with increasing temperature and pressure (Ren et al., 2009), with solubilities, for                                       |
| 310 | example, of ~1.5 wt% at 10 GPa and 1800°C, and ~5 wt% at 2000°C and 23 GPa. While it is                                            |
| 311 | difficult to extrapolate down to lower pressure and temperature conditions, about half of our Si                                   |
| 312 | surface concentrations fall below the former value.                                                                                |
| 313 | The influence of point defect chemistry on chemical diffusion in rutile is discussed in                                            |
| 314 | numerous publications (e.g., Nowotny et al., 2006a;b; 2012). The principal atomic defects in                                       |
| 315 | undoped rutile are titanium interstitials and oxygen and titanium vacancies (e.g., Marucco et al.,                                 |
| 316 | 1981; Hoshino et al., 1985; Bak et al., 2012). There are two kinetic regimes associated with the                                   |
|     |                                                                                                                                    |

317 diffusion-controlled equilibration kinetics of TiO<sub>2</sub> . The first is controlled by transport of rapidly

318 moving defects (oxygen vacancies, titanium interstitials) and the second is determined by the 319 transport of titanium vacancies which diffuse much more slowly; this results in a difference in 320 diffusivities between the two regimes of about 4 orders of magnitude (Nowotny et al., 2006a;b). 321 Additional point defects will be present if altervalent impurities reside on Ti sites in rutile. 322 Common substitutional impurities in natural rutile are the pentavalent cations Nb and Ta, ferric 323 and ferrous iron, as well as other transition elements and Al (Deer et al., 1992). Electrostatic 324 balance for pentavalent cations is commonly achieved by vacancies in cation sites, or by 325 complementary substitution of divalent or trivalent cations (such as Fe) on Ti lattice sites. The 326 pentavalent cations Ta and Nb diffuse much more rapidly than Al (Marschall et al., 2013; 327 Dohmen et al., 2018) and our results indicate that the presence of pentavalent cations as potential 328 charge compensating species appears to have little effect on Al diffusion. For divalent and 329 trivalent cations, charge compensation may be via oxygen vacancies or Ti interstitials. Experimental and theoretical studies suggest that trivalent species such as Cr and Sc, and 330 331 tetravalent Zr are likely to diffuse via an interstitialcy mechanism that involves tetravalent 332 interstitial Ti ions (Sasaki et al., 1985; Zhu et al., 2017). The diffusion rates for these cations (along with Ti self diffusion; e.g., Akse and Whitehurst, 1978) have a dependency on oxygen 333 334 fugacity to the negative one-fifth power (D  $\propto$  (pO<sub>2</sub>)<sup>-1/5</sup>), which provides supporting evidence for 335 tetravalent Ti interstitials as the controlling point defect. Recent work by Dohmen et al. (2018) 336 on diffusion of tetravalent (Zr, Hf) and pentavalent (Nb, Ta) cations in rutile has determined the 337 presence of two different diffusion mechanisms: (i) an interstitialcy mechanism involving 338 trivalent Ti on interstitial sites, and (ii) a vacancy mechanism involving Ti vacancies. The former 339 is dominant at lower fO<sub>2</sub> ( $\leq$  QFM +2 log units), as well as at high temperatures (above 1350°C),

340 and has a negative dependence on  $fO_2$ , with the latter the dominant mechanism at higher  $fO_2$  ( >

341 QFM+2) and having diffusivities largely independent of fO<sub>2</sub>.

342 Both Si and Al diffusivities appear broadly consistent with a negative dependence on  $fO_2$ . 343 suggesting an interstitial we mechanism. In contrast to Al, activation energies for diffusion of Si 344 are similar to those for T<sub>i</sub>. While we do not have full understanding of lattice diffusion 345 mechanisms from the results of this study, the data reported are from experiments conducted 346 under conditions of geologic relevance. These results indicate that Al and Si diffusion are not 347 greatly affected by the differing amounts of minor and trace elements present in the synthetic and 348 natural rutiles. However, it is important to note that while Al and Si concentrations in these 349 experiments approach those that could be found in mantle-derived rutile, they are much higher 350 than concentrations generally found in crustal rutile, which range up to several hundred ppm 351 (e.g., Zack et al., 2004a). The present data, given the detection limits for analysis and the 352 relatively high concentrations of Al and Si in diffusion experiments, do not preclude the 353 occurrence of differing diffusion mechanisms at lower concentrations of Al and Si. 354 The effects of pressure, and water or other hydrous species on diffusion rates are also 355 considerations in applying these experimental results. Pressure effects on diffusion in rutile have 356 not been extensively explored, but they are unlikely to be large for geologically reasonable 357 pressure ranges. There has been some investigation of the effects of hydrous species on oxygen 358 diffusion (Moore et al., 1998), which indicates that oxygen diffusion in rutile grown in the 359 presence of water, or in rutile grains reduced in such an environment, is about an order of 360 magnitude slower than in rutile reduced under anhydrous conditions, but there is little evidence 361 to date of the influence of hydrous species on cation diffusion.

- 362 Although the potential effects of the factors of concentration and the presence of hydrous
- 363 species on Al and Si diffusion are not fully resolved, we apply our diffusion data (with the
- 364 caveats above) in simple calculations and comparisons in the sections that follow.

## 365 Si and Al diffusion in other minerals compared with rutile

A summary of data for Al and Si diffusion is plotted in Figure 6. As in rutile, Al diffusion in

367 Al<sub>2</sub>O<sub>3</sub> has a high activation energy for diffusion, and diffusivities are comparable in magnitude

368 to those for rutile. Al diffusion is much faster in MgO, olivine, quartz, and magnetite. Si

369 diffusion in rutile is slower than quartz, MgO and labradorite, but faster than Si in zircon,

anorthite, and olivine, and comparable to silicate perovskite and diopside over the temperature

371 range under which experiments were conducted. However, given the differences in activation

372 energies for diffusion, Si diffusion in rutile will be faster than in most other minerals at lower

373 temperatures (below  $\sim 1000^{\circ}$ C) with the exception of diopside and MgO.

Béjina and Jaoul (1997) found that diffusion parameters obtained for Si diffusion in silicates

375 conform to a linear compensation law when the activation energy for diffusion is plotted as a

376 function of the log of the pre-exponential factor. This compensation relation, using the data

tabulated in Bejina and Jaoul (1997), a few more recent results, including that for zircon from

378 Cherniak (2008), was described in Cherniak (2008) by the equation  $E = 647.7 + 30.5 \times \log D_0$ .

Béjina and Jaoul (1997) argue that compensation behavior may be explained by the 'strain

380 energy' model proposed in Zener (1952), in which the Gibbs free energy of diffusion is

381 considered the 'elastic work' required to place the defect in its excited state for migration within

the lattice. They note that differences in activation enthalpies among individual materials are

383 likely due to differences in the coupling of point defects that minimize the migration energy for

| 384  | Si through the lattice, and/or the characteristic 'extrinsicity' of the material (based on its impurity     |
|------|-------------------------------------------------------------------------------------------------------------|
| 385  | levels, non-stoichiometry, presence of aliovalent cations, and other factors).                              |
| 386  | Interestingly, our diffusion parameters for Si in rutile fall closely along the compensation                |
| 387  | trend (Figure 7). If we interpret our findings in light of these observations, the relatively low           |
| 388  | activation energy for Si diffusion in rutile may be in part attributable to the greater possibility of      |
| 389  | non-stoichiometry of rutile and the potential for the coupling of point defects in ways that may            |
| 390  | reduce the energies for Si migration through the mineral lattice (e.g., Bejina and Jaoul, 1997).            |
| 391  | Diffusion parameters for Si in MgO (Sakaguchi et al., 1992) also fall along the compensation                |
| 392  | trend. Whether this conformity to a diffusion compensation trend for Si diffusion applies to other          |
| 393  | non-silicates remains unclear, but these results may be suggestive of a more generalized                    |
| 394  | applicability of the Meyer-Neldel Rule (diffusion compensation law) for Si diffusion. As Jones              |
| 395  | (2014) has noted, when considering the case of a single diffusing species in a range of mineral             |
| 396  | phases, it may be the case that those minerals with a large average activation barrier (high $E_a$ )        |
| 397  | compensate with increased frequency of attempts to diffuse (larger D <sub>o</sub> ) (e.g., Boisvert et al., |
| 398  | 1995), thus resulting in these diffusion compensation trends.                                               |
| 399  |                                                                                                             |
| 400  | Diffusion in mineral – element pairs used as geothermobarometers                                            |
| 40.1 |                                                                                                             |

401 Figure 8 presents a summary of data for diffusion of mineral-element pairs employed in

402 crystallization geothermo(baro)meters. These mineral-element pairs include Zr in rutile

403 (Degeling, 2003; Zack et al., 2004b; Watson et al., 2006; Tomkins et al., 2007; Ferry and

- 404 Watson, 2007), Ti in zircon (Watson et al., 2006; Ferry and Watson, 2007, Watson and
- Harrison, 2005), Ti in quartz (Wark and Watson, 2006; Thomas et al., 2010), and Zr in titanite
- 406 (Hayden et al., 2008), and Al in rutile (Hoff and Watson, 2018). The Al diffusion data from the

| 407 | present work and measurements of diffusivities for the other mineral-element pairs (Cherniak,                     |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 408 | 2006; Cherniak et al., 2007a; b; Cherniak and Watson, 2007) can be used to evaluate the relative                  |
| 409 | resistance of these geothermometers to diffusional alteration when these mineral phases                           |
| 410 | experience subsolidus thermal events following crystallization. For comparison, we also plot our                  |
| 411 | data for Si diffusion.                                                                                            |
| 412 | Diffusion of Al in rutile is faster than Ti diffusion in zircon, but considerably slower than Ti                  |
| 413 | diffusion in quartz, and slower than Zr diffusion in titanite and rutile under geologically relevant              |
| 414 | conditions. For example, at 800°C, Al diffusion in rutile would be about 5 orders of magnitude                    |
| 415 | faster than Ti diffusion in zircon, but 7 orders of magnitude slower than Ti diffusion in quartz,                 |
| 416 | and ~5 and 6 orders of magnitude slower than Zr diffusion in rutile and titanite, respectively.                   |
| 417 | At 800°C, Si would diffuse more slowly than Zr in rutile by about 2 orders of magnitude.                          |
| 418 | Although slower diffusivities of Si with respect to Zr in rutile are unlikely to influence                        |
| 419 | temperatures derived from Zr-in-rutile thermometry (Kohn et al., 2016), Si diffusion may be                       |
| 420 | rate-limiting for other processes, such as the exsolution of zircon needles in rutile. Also, Si is a              |
| 421 | significant trace component of natural rutile whose concentration has been shown to be                            |
| 422 | particularly sensitive to pressure (Gaetani et al., 2008; Ren et al., 2009; Mosenfelder et al., 2010;             |
| 423 | Escudero and Langenhorst, 2012). Based in part on the data of Gaetani et al. (2008), Taylor-                      |
| 424 | Jones and Powell (2015) proposed a preliminary equation to describe the T and P dependence of                     |
| 425 | Si uptake in rutile in equilibrium with quartz and zircon. A comprehensive experimental                           |
| 426 | calibration may emerge in the foreseeable future, which would elevate the importance of our new                   |
| 427 | diffusion law for Si to a new level. Taylor-Jones and Powell (2015) emphasized the potential                      |
| 428 | value of a high closure temperature (T <sub>C</sub> ) for Si diffusion in rutile, contrasting with the relatively |
| 429 | low T <sub>C</sub> value for Zr diffusion (see next section).                                                     |

The relatively low diffusivity of Al indicates that the Al-in-rutile geothermobarometer (Hoff
and Watson, 2018) will be resistant to diffusional resetting under a broad range of geologic
conditions. In the following section, we will evaluate time-temperature scenarios under which
these records may be preserved or compromised.

434

## 435 **Preservation of chemical signatures for various crystallization thermometers**

436 Using the diffusion data reported in this work, we can illustrate how well specific

437 crystallization geothermometers may preserve past temperatures with calculations that constrain

438 conditions under which resetting of Al, Si, Zr or Ti chemical signatures (and therefore

439 information about crystallization temperatures) may take place. For a simple example, we use a

440 model in which the mineral grains are spheres of radii *a* having an initial uniform concentration

441 of diffusant  $C_1$ , which are exposed to an external medium with diffusant concentration  $C_o$ . Based

442 on these initial and boundary conditions, a solution to the diffusion equation at the center of the

443 spheres can be derived (e.g., Crank, 1975). For circumstances when the dimensionless parameter

444  $Dt/a^2$  (where D is the diffusion coefficient and t is the time) has a value than or equal to 0.03, the

445 concentration at the center of the sphere will remain unchanged from the initial value. This can

446 be referred to as a "center retention" criterion. At greater values of  $Dt/a^2$ , concentrations of

447 diffusant at the sphere's center will be is affected by the external concentration C<sub>o</sub>. If we

448 consider an infinite cylinder geometry (better suited for many rutile grains), a similar model can

449 be applied with *a* as the radius of the cylinder; for this model the relevant value of the center-

450 retention parameter  $Dt/a^2$  is ~ 0.04.

451 In Figure 9, sets of curves for  $Dt/a^2$  for the values of these dimensionless parameters are 452 plotted, using effective diffusion radii that represent typical grain sizes for each mineral. These

| 453 | values of radii $a$ are 0.5 mm for quartz, 250 $\mu$ m for rutile and titanite, and 50 $\mu$ m for zircon. The |
|-----|----------------------------------------------------------------------------------------------------------------|
| 454 | curves define the time-temperature limits under which initial Al, Si, Zr or Ti compositional                   |
| 455 | information will be preserved in the grain centers of each mineral, with concentrations at crystal             |
| 456 | cores remaining unaltered for conditions below the curves, but affected by the surrounding                     |
| 457 | medium for conditions above the curves. These plots demonstrate that crystallization conditions                |
| 458 | estimated from Al concentrations in rutile will be far more resistant to diffusional alteration than           |
| 459 | those from the Zr-in-rutile thermometer. For example, at 900°C, Al compositional information                   |
| 460 | would be preserved over $\sim$ 3 Gyr in the center of 250 $\mu$ m radius rutile grains, but Zr                 |
| 461 | compositional information would be preserved for only about 300,000 years at this temperature.                 |
| 462 | Al-in-rutile compositions will also be much better preserved during subsolidus thermal events                  |
| 463 | subsequent to crystallization than those for Ti-in-quartz and Zr-in-titanite crystallization                   |
| 464 | thermometers. In general, the likelihood of preservation of Si concentrations in rutile falls                  |
| 465 | between that for Zr and Al.                                                                                    |
| 466 | The conclusions summarized above can be graphically illustrated in a manner that simulates                     |
| 467 | x-ray maps that could be obtained on individual rutile crystals in natural rocks. Concentration                |
| 468 | contour maps are well-suited to portraying the spatial distribution (and therefore diffusion                   |
| 469 | progress) of elements in natural crystals, as a complement to the sometimes intuitively elusive                |
| 470 | dimensionless quantity $Dt/a^2$ . To this end, we ran simulations of Si, Al and Zr diffusion in rutile         |
| 471 | crystals with the goal of contouring the resulting concentrations in 2-D section to illustrate and             |
| 472 | compare results. In this case our model crystal was a cylindrical rutile grain 200 $\mu m$ in diameter         |
| 473 | and 600 $\mu$ m long; calculations were performed using the CYLMOD computer program written                    |
| 474 | by Watson et al. (2010) for the purpose of modeling diffusion in finite cylinders. The                         |
| 475 | concentration of the elements was held constant at the cylinder surface at an arbitrary value                  |

| 476 | below the initial (uniform) concentration within the cylinder. The broad objective was to          |
|-----|----------------------------------------------------------------------------------------------------|
| 477 | illustrate outcomes for the three elements that span behaviors from nearly closed (very limited    |
| 478 | diffusion) to badly compromised. An isothermal heating event lasting 10 million years was used     |
| 479 | for this comparison; results are shown in Figure 10 as concentration contours within the rutile    |
| 480 | cylinder expressed in terms of % of the initial uniform value. For the time span considered,       |
| 481 | diffusion progress for Al, Si and Zr is approximately the same (and very limited) at 900, 700 and  |
| 482 | 500°C, respectively. The three diffusants also show similar progress (66-78% overall retention)    |
| 483 | at 950, 800 and 600°C, respectively. Higher temperatures result pronounced open-system             |
| 484 | behavior, as shown by the bottom row of panels in Figure 10.                                       |
| 485 | All of the preceding discussion applies to isothermal conditions. Given the availability of        |
| 486 | diffusion laws for the relevant elements, the possibility of open-system behavior during both      |
| 487 | prograde and retrograde metamorphism can also be readily addressed. Resetting of                   |
| 488 | thermobarometers during geologic cooling can be evaluated qualitatively using the well-known       |
| 489 | closure-temperature equation of Dodson (1973), which returns closure temperatures for Al, Si       |
| 490 | and Zr in rutile of ~1050°C, ~930°C, and ~700°C for spherical grains of 250 $\mu$ m radius cooling |
| 491 | at 10°C /Myr. Similarly, there may be instances where rutile crystallizes in a metabasite at       |
| 492 | relatively low temperature and is subsequently heated with increasing metamorphic grade,           |
| 493 | possibly resetting one or more thermobarometers. In this case it is instructive to explore both    |
| 494 | center retention (defined as above), and diffusive "opening", which we define as a 1% diffusive    |
| 495 | loss or gain of the element of interest — i.e., incipient open-system behavior. Diffusive          |
| 496 | "opening" and center retention during linear heating of spherical grains are readily evaluated     |
| 497 | using the generalized expression of Watson and Cherniak (2013):                                    |

498 
$$T_{rt\%} = \frac{0.457 \cdot (E_a / R)}{\chi_h + \log\left[\frac{E_a \cdot D_0}{R \cdot dT / dt \cdot a^2}\right]}$$
(1)

499 where  $D_o$  and  $E_a$  are the Arrhenius parameters for the diffusant of interest, dT/dt is the heating 500 rate, a is the radius of the grain domain, R is the gas constant, and  $\chi_h$  is a constant describing the 501 fraction of change in the amount. For a given heating trajectory,  $T_{rt\%}$  is the temperature (in 502 kelvins) at which a specific fractional retention (or loss) is reached, and where the constant  $\chi_h$ 503 will have a specific value depending on the amount of fractional loss. For retention levels of 504 50% and 99%, the center retention and diffusive opening criteria defined above,  $\chi_h$  has values of 505 -0.785 and 2.756, respectively. In calculations, we use a linear heating rate of 10°C/Myr and plot 506 opening and center retention temperatures for Al as a function of grain radius in Figure 11. For 507 comparison, we also plot conditions for diffusive opening of both Zr and Pb in rutile, using the 508 diffusion parameters of Cherniak et al. (2007a) and Cherniak (2000) respectively. This provides 509 additional illustration of the comparatively high retentivity for Al chemical signatures in rutile; 510 for example, Al would require heating to temperatures in excess of 840°C to induce a 1% change 511 in Al composition in 100µm radius rutile grains, while comparable changes in Zr and Pb 512 compositions would result when reaching temperatures of only ~420°C and ~480°C, 513 respectively. 514

## 515 Implications

This study has shown that both Al and Si are among the slowest-diffusing species measured in rutile to date. With these slow diffusivities, the recently-developed Al-in-rutile crystallization geothermobarometer (Hoff and Watson, 2018) will be a robust indicator of past temperature and pressure conditions, more resistant to diffusional alteration than the Zr-in-rutile crystallization

- 520 thermometer. In addition, should a Si-in-rutile thermometer become more fully developed, Si
- 521 concentrations in rutile will likewise provide a crystallization thermometer resistant to alteration
- 522 by diffusion.
- 523
- 524 *Acknowledgements* This work was supported by NSF grant no. 1551381 to EBW. We thank
- 525 Christopher Hoff for helpful discussions about Al and Si uptake in rutile. Constructive comments
- 526 by reviewers Ralf Dohmen and Elias Bloch and Associate Editor Antonio Acosta-Vigil helped in
- 527 improving the final version of the manuscript.
- 528
- 529

### 530 References

- 531
- Akse, J.R., and Whitehurst, H.B. (1978) Diffusion of titanium in slightly reduced rutile. Journal
  of Physics and Chemistry of Solids, 39, 457-465.
- Bak, T., Bogdanoff, P., Fiechter, S., and Nowotny, J. (2012) Defect engineering of titanium
- 535 dioxide: full defect disorder. Advances in Applied Ceramics, 111, 62-71.
- 536 Bak, T., Nowotny, J., Rekas, M., and Sorrell, C. (2003) Defect chemistry and semiconducting
- properties of titanium dioxide. Journal of Physics and Chemistry of Solids, 64, 1057-1067.
- 538 Béjina, F., and Jaoul, O. (1997) Silicon diffusion in silicate minerals. Earth and Planetary
- 539 Science Letters, 153, 229-238.
- 540 Béjina, F., and Jaoul, O. (1996) Silicon self-diffusion in quartz and diopside measured by nuclear
- 541 micro-analysis methods. Physics of Earth and Planetary Interiors, 97, 145-162.
- 542 Boisvert, G., Lewis, L.J., and Yelon, A. (1995) Many-body nature of the Meyer-Neldel
- 543 compensation law for diffusion. Physical Review Letters, 75, 469-472.
- 544 Brenan, J.M., Shaw, H.F., Phinney, D.L., and Ryerson, F.J.,(1994) Rutile-aqueous fluid
- 545 partitioning of Nb, Ta, Hf, Zr, U and Th; implications for high field strength element
- depletions in island-arc basalts. Earth and Planetary Science Letters, 128, 327-339.
- 547 Cherniak, D.J. (2008) Si diffusion in zircon. Physics and Chemistry of Minerals, 35, 179–187.
- 548 Cherniak, D.J. (2006) Zr diffusion in titanite. Contributions to Mineralogy and Petrology, 152,
- *639-647*.
- 550 Cherniak, D.J. (2003) Silicon self-diffusion in single crystal natural quartz and feldspar. Earth
- 551 Earth and Planetary Science Letters, 214, 655-668.

- 552 Cherniak, D.J. (2000) Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139,
- 553 198-207.
- 554 Cherniak, D.J. (1995) Diffusion of Pb in plagioclase and K-feldspar measured by Rutherford
- 555 Backscattering spectroscopy and resonant nuclear reaction analysis. Contributions to
- 556 Mineralogy and Petrology, 120, 358-371.
- 557 Cherniak, D.J. (1993) Lead diffusion in titanite and preliminary results on the effects of radiation
- damage on Pb transport. Chemical Geology, 110, 177-194.
- 559 Cherniak, D.J., and Watson, E.B. (2007) Ti diffusion in zircon. Chemical Geology, 242, 473-
- 560 486.
- 561 Cherniak, D.J., and Watson, E.B. (1994) A study of strontium diffusion in plagioclase using
- 562 Rutherford Backscattering Spectroscopy, Geochimica et Cosmochimica Acta, 58, 5179-5190.
- 563 Cherniak, D.J., and Watson, E.B. (1992) A study of strontium diffusion in K-feldspar, Na-K
- feldspar and anorthite using Rutherford Backscattering Spectroscopy. Earth and Planetary
- 565 Science Letters, 411-425.
- 566 Cherniak, D.J. Manchester, J., and Watson, E.B. (2007a) Zr and Hf diffusion in rutile. Earth and
  567 Planetary Science Letters, 261, 267-279.
- 568 Cherniak, D.J., Watson, E.B., and Wark, D.A. (2007b) Ti diffusion in quartz, Chemical Geology,
  569 236, 65-74.
- 570 Corfu, F., and Muir, T.L. (1989) The Hemlo-Heron Bay greenstone belt and Hemlo Au-Mo
- 571 deposit, Superior Province, Ontario, Canada; 2, Timing of metamorphism, alteration and Au
- 572 mineralization from titanite, rutile, and monazite U-Pb geochronology. Chemical Geology -
- 573 Isotope Geoscience, 79, 201-223.

- 574 Corfu, F., and Andrews, A.J. (1986) A U-Pb age for mineralized Nipissing Diabase, Gowganda,
- 575 Ontario. Canadian Journal of Earth Sciences. 23, 107-109.
- 576 Crank, J. (1975) The Mathematics of Diffusion (2nd ed.), Oxford, 414 pp.
- 577 Cruz-Uribe, A.M., Feineman, M.D., Zack, T., and Jacob, D.E. (2018) Assessing trace element
- 578 (dis)equilibrium and the application of single element thermometers in metamorphic rocks.
- 579 Lithos, 314–315, 1–15.
- 580 Davis, W.J. (1997) U-Pb zircon and rutile ages from granulite xenoliths in the Slave Province;
- 581 evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms.
- 582 Geology, 25, 343-346.
- 583 Deer, W.A., Howie, R.A., and Zussman, J. (1992) An introduction to the rock-forming minerals.
- 584 Longman Scientific Technical, Harlow, United Kingdom.
- 585 Degeling, H.S. (2003) Zr equilibria in metamorphic rocks. Unpublished PhD thesis, Australian
- 586 National University, 231 pp.
- 587 Demiryont, H. (1985) Optical properties of SiO<sub>2</sub>-TiO<sub>2</sub> composite films. Applied Optics 24,
- 588 2647-2650.
- 589 Dieckmann, R., Mason, T.O., Hodge, J.D., and Schmalzried, H. (1978) Defects and cation
- 590 diffusion in magnetite (III.) Tracer diffusion of foreign tracer cations as a function of
- 591 temperature and oxygen potential. Berichte der Bunsengesellschaft für Physikalische Chemie,
- 592 82, 778-783.
- 593 Dohmen, R., Chakraborty, S., and Becker, H.-W. (2002) Si and O diffusion in olivine and
- implications for characterizing plastic flow in the mantle. Geophysical Research Letters, 29,
- 595 26-1 26-4.

- 596 Dohmen, R., Marschall, H.R., Ludwig, T., and Polednia, J. (2018) Diffusion of Zr, Hf, Nb and
- 597 Ta in rutile: effects of temperature, oxygen fugacity, and doping level, and relation to rutile
- point defect chemistry. Physics and Chemistry of Minerals. https://doi.org/10.1007/s00269-
- **599 018-1005-7**
- 600 Escudero, A., Langenhorst, F., and Müller, W.F. (2012) Aluminum solubility in TiO<sub>2</sub> rutile at
- high pressure and experimental evidence for a CaCl<sub>2</sub>-structured polymorph. American
- 602 Mineralogist, 97, 1075–1082.
- 603 Escudero, A., and Langenhorst, F. (2012) Incorporation of Si into TiO<sub>2</sub> phases at high pressure.
- 604 American Mineralogist, 97, 524-531.
- Ewing, T.A., and Müntener, O. (2018) The mantle source of island arc magmatism during early
- subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc,
- 607 Pakistan). Lithos, 308–309, 262–277.
- 608 Ewing, T.A., Hermann, J., and Rubatto, D. (2013) The robustness of the Zr-in-rutile and Ti-in-
- conthermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern
- 610 Italy). Contributions to Mineralogy and Petrology, 165, 757–779.
- 611 Ferry, J.M., and Watson, E.B. (2007) New thermodynamic models and revised calibrations for
- 612 the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology,
- 613 154, 429-437.
- 614 Fielitz, P., Borchardt, G., Schmücker, M., and Schneider, H. (2006) Al-26 diffusion
- 615 measurement in 2/1-mullite by means of Secondary Ion Mass Spectrometry. Solid State
- 616 Ionics, 177, 493-496.

- 617 Foley, S.F., Barth, M.G., and Jenner, G.A. (2000) Rutile/melt partition coefficients for trace
- elements and an assessment of the influence of rutile on the trace element characteristics of
- 619 subduction zone magmas. Geochimica et Cosmochimica Acta, 64, 933-938.
- 620 Gaetani, G.A., Asimow, P.D., and Stolper, E.M. (2008) A model for rutile saturation in silicate
- 621 melts with application to eclogite partial melting in subduction zones and mantle plumes.
- Earth and Planetary Science Letters, 272, 720-729.
- 623 Gesenhues, U., and Rentschler, T. (1999) Crystal growth and defect structure of Al<sup>3+</sup>-doped
- rutile. Journal of Solid State Chemistry, 143, 210-218.
- 625 Gesenhues, U. (1997) Doping of TiO<sub>2</sub> pigments by Al<sup>3+</sup>. Solid State Ionics, Diffusion &
- 626 Reactions, 101-103, 1171-80.
- 627 Golden, E.M., Giles, N.C., Shan Yang, and Halliburton, L.E. (2015) Interstitial silicon ions in
- for the rutile  $TiO_2$  crystals. Physical Review, B 91, 134110.
- 629 Gonzalez-Elipe, A.R., Gracia, F., Yubero, F., Holgado, J.P., Espinos, J.P., and Girardeau, T.
- (2006) SiO<sub>2</sub>/TiO<sub>2</sub> thin films with variable refractive index prepared by ion beam induced and
- 631 plasma enhanced chemical vapor deposition. Thin Solid Films, 500, 19-26.
- Guo S., Tang P., Su B., Chen Y., Ye K., Zhang L., Gao Y., Liu J., and Yang Y. (2017) Unusual
- 633 replacement of Fe-Ti oxides by rutile during retrogression in amphibolite-hosted veins (Dabie
- 634 UHP Terrane); a mineralogical record of fluid-induced oxidation processes in exhumed UHP
- slabs. American Mineralogist, 102, 2268-2283.
- 636 Hatta, K., Higuchi, M., Takahashi, J., and Kodaira, K. (1996) Floating zone growth and
- 637 characterization of aluminum-doped rutile single crystals. Journal of Crystal Growth, 163,
- 638 279-284.

- Hayden, L.A., Watson, E.B., and Wark, D.A. (2008) A thermobarometer for sphene (titanite).
- 640 Contributions to Mineralogy and Petrology, 155, 529-540.
- 641 Heaman, L., and Parrish, R. (1991) U-Pb geochronology of accessory minerals. Short Course
- Handbook, 19, 59-102. Mineralogical Association of Canada.
- Hoff, C.M., and Watson, E.B. (2018) Aluminum in rutile as a recorder of temperature and
- 644 pressure. V.M. Goldschmidt Conference.
- Hoshino, K., Peterson, N.L., and Wiley, C.L. (1985) Diffusion and point defects in TiO<sub>2-x</sub>.
- Journal of Physics and Chemistry of Solids, 46, 1397-1411.
- 647 Islam, M.M., Bredow, T., and Gerson, A. (2007) Electronic properties of oxygen-deficient and
- aluminum-doped rutile  $TiO_2$  from first principles. Physical Review, B 76, 045217.
- 649 Jaoul, O., Poumellec, M., Froidevaux, C., and Havette, A. (1981) Silicon diffusion in forsterite:
- A new constraint for understanding mantle deformation. In: Anelasticity in the Earth, Stacey,
- F.D., Paterson, M.S., Nicholas, A. (eds.), American Geophysical Union, pp. 95-100.
- Jones, A. G. (2014) Compensation of the Meyer-Neldel Compensation Law for H diffusion in
- minerals. Geochemistry Geophysics Geosystems, 15, doi:10.1002/2014GC005261
- 654 Karvinen, S. (2003) The effects of trace elements on the crystal properties of TiO<sub>2</sub>. Solid State
- 655 Science, 5, 811-819.
- 656 Kohn, M.J., Penniston-Dorland, S.C., and Ferreira, J.C.S. (2016) Implications of near-rim
- 657 compositional zoning in rutile for geothermometry, geospeedometry, and trace element
- equilibration. Contributions to Mineralogy and Petrology, 171, 78.
- Le Gall, M., Lesage, B., and Bernardini, J. (1994) Self-diffusion in Al<sub>2</sub>O<sub>3</sub>. I. Aluminum diffusion
- in single crystals. Philosophical Magazine, 70, 761–773.

- Liu, L., Xiao, Y., Aulbach, S., Li, D., and Hou, Z. (2014) Vanadium and niobium behavior in
- rutile as a function of oxygen fugacity: evidence from natural samples. Contributions to
- 663 Mineralogy and Petrology, 167, 1026.
- Marschall, H.R., Dohmen, R., and Ludwig, T. (2013) Diffusion-induced fractionation of niobium
- and tantalum during continental crust formation. Earth and Planetary Science Letters, 375,
- 666 <u>361–371</u>.
- 667 Marucco, J.-F., Gautron, J., and Lemasson, P. (1981) Thermogravimetric and electrical study of
- nonstoichiometric titanium dioxide TiO<sub>2-x</sub> between 800 and 1100°C. Journal of Physics and
- 669 Chemistry of Solids, 42, 363-367.
- 670 Mezger, K., Rawnsley, C.M., Bohlen, S.R., and Hanson, G.N. (1991) U-Pb garnet, sphene,
- 671 monazite, and rutile ages; implications for the duration of high-grade metamorphism and
- 672 cooling histories, Adirondack Mts., New York. Journal of Geology, 99, 415-428.
- 673 Mezger, K., Hanson, G.N., and Bohlen, S.R. (1989) High-precision U-Pb ages of metamorphic
- rutile; application to the cooling history of high-grade terranes. Earth and Planetary Science
- 675 Letters, 96, 106-118.
- 676 Mitchell, R.J., and Harley, S.L. (2017) Zr-in-rutile resetting in aluminosilicate bearing ultra-high
- 677 temperature granulites: Refining the record of cooling and hydration in the Napier Complex,
- 678 Antarctica. Lithos, 272–273, 128–146.
- Moore, D.K., Cherniak, D.J., and Watson, E.B. (1998) Oxygen diffusion in rutile from 750 to
- 680 1000 degrees C and 0.1 to 1000 MPa. American Mineralogist, 83, 700-711.
- Morton, A.C., and Hallsworth, C.R. (1999) Processes controlling the composition of heavy
- 682 mineral assemblages in sandstones. Sedimentary Geology, 124, 3-30.

- 683 Mosenfelder, J.D., Kim, N., and Stebbins, J.F. (2010) Silicon coordination in rutile and TiO<sub>2</sub>-II
- at ambient and high pressures. American Mineralogist, 95, 968-973.
- Nakayama, T., and Sasaki, T. (1963) The diffusion of barium in a rutile single crystal. Bulletin of
  the Chemical Society of Japan, 36, 569-574.
- Nowotny, M.K., Bak, T., and Nowotny, J. (2006a) Electrical properties and defect chemistry of
- 688 TiO<sub>2</sub> single crystal. III. Equilibrium kinetics and chemical diffusion. Journal of Physical
- 689 Chemistry, B 110, 16292-16301.
- 690 Nowotny, M.K., Bak, T., and Nowotny, J. (2006b) Electrical properties and defect chemistry of
- 691 TiO<sub>2</sub> single crystal. IV. Prolonged oxidation kinetics and chemical diffusion. Journal of
- 692 Physical Chemistry, B 110, 16302-16308.
- Pape, J., Mezger, K., and Robyr, M. (2016) A systematic evaluation of the Zr-in-rutile
- 694 thermometer in ultra-high temperature (UHT) rocks. Contributions to Mineralogy and
- 695 Petrology, 171, 44.
- 696 Paladino, A. E., and Kingery, W. D. (1962) Aluminum ion diffusion in aluminum oxide. Journal
- 697 of Chemical Physics, 37, 957–962.
- Ren, Y., Fei, Y., Yang, J., and Bai, W. (2009) SiO<sub>2</sub> solubility in rutile at high temperature and
- high pressure. Journal of Earth Sciences, 20, 274-283.
- 700 Ryerson, F.J., and Watson, E.B. (1987) Rutile saturation in magmas; implications for Ti-Nb-Ta
- depletion in island-arc basalts, Earth and Planetary Science Letters, 86, 225-239.
- 702 Sakaguchi, I., Yurimoto, H., and Sueno, S. (1992) Impurities dislocation diffusion in single
- 703 crystal MgO. Materials Science and Engineering, B 13, LI-L4.
- Sasaki, J., Peterson, N.L., and Hoshino, K. (1985) Tracer impurity diffusion in single-crystal
- rutile (TiO<sub>2-x</sub>), Journal of Physics and Chemistry of Solids, 46, 1267-1283.

- Schandl, E.S., Davis, D.W., and Krogh, T.E. (1990) Are the alteration halos of massive sulfide
- 707 deposits syngenetic? Evidence from U-Pb dating of hydrothermal rutile at the Kidd volcanic
- center, Abitibi Subprovince, Canada. Geology, 18, 505-508.
- 709 Slepetys, R.A., and Vaughan, P.A. (1969) Solid solution of aluminum oxide in rutile titanium
- 710 oxide. Journal of Physical Chemistry, 73, 2157–2162.
- 711 Smye, A.J., and Stockli, D.F. (2014) Rutile U–Pb age depth profiling: A continuous record of
- 712 lithospheric thermal evolution. Earth and Planetary Science Letters, 408, 171–182.
- 713 Stalder, R., Foley, S.F., Brey, G.P., and Horn, I. (1998) Mineral-aqueous fluid partitioning of
- trace elements at 900-1200 degrees C and 3.0-5.7 GPa; new experimental data for garnet,
- 715 clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et
- 716 Cosmochimica Acta, 62, 1781-1801.
- 717 Stebbins, J.F. (2007) Aluminum substitution in rutile titanium dioxide: New constraints from
- <sup>718</sup> high-resolution <sup>27</sup>Al NMR. Chemistry of Materials, 19, 1862-1869.
- 719 Tailby, N.D., Cherniak, D.J., and Watson, E.B. (2018) Al diffusion in quartz. American
- 720 Mineralogist, 103, 839–847.
- 721 Taylor-Jones, K., and Powell, R. (2015). Interpreting zirconium-in-rutile thermometric results.
- Journal of Metamorphic Geology, 33, 115–122.
- 723 Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K., and Lanzirotti, A. (2010)
- 724 TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in
- quartz. Contributions to Mineralogy and Petrology, 160, 743-759.
- 726 Tomkins, H.S., Powell, R., and Ellis, D.J. (2007) The pressure dependence of the zirconium-in-
- rutile thermometer. Journal of Metamorphic Geology, 25, 703-713.

- 728 Tual, L., Möller, C., and Whitehouse, M.J. (2018) Tracking the prograde P–T path of
- 729 Precambrian eclogite using Ti-in quartz and Zr-in-rutile geothermobarometry. Contributions
- to Mineralogy and Petrology, 173, 56.
- 731 Van Orman, J.A., Li, C., and Crispin, K.L. (2009) Aluminum diffusion and Al-vacancy
- association in periclase. Physics of Earth and Planetary Interiors, 172, 34-42.
- 733 Venkatu, D.A. and Poteat, L.E. (1970) Diffusion of titanium in single crystal rutile. Materials
- 734 Science and Engineering, 5, 258-562.
- 735 Vlassopoulos, D., Rossman, G.R., and Haggerty, S.E. (1993) Coupled substitution of H and
- minor elements in rutile and the implications of high OH contents in Nb- and Cr-rich rutile
- from the upper mantle. American Mineralogist, 78, 1181-1191.
- 738 Wark, D.A., and Watson, E.B. (2006) TitaniQ: A titanium-in-quartz geothermometer,
- Contributions to Mineralogy and Petrology, 152, 743-754.
- 740 Watson, E.B., and Harrison, T.M. (2005) Zircon thermometer reveals minimum melting
- conditions on earliest Earth. Science 308, 841-844.
- 742 Watson, E.B., and Cherniak, D.J. (2013) Simple equations for diffusion in response to heating.
- 743 Chemical Geology, 335, 93-104.
- 744 Watson, E.B., Wark, D.A., and Thomas, J.B. (2006) Crystallization thermometers for zircon and
- rutile, Contributions to Mineralogy and Petrology, 151, 413-433.
- 746 Watson, E.B., Wanser, K.H., and Farley, K.A. (2010) Anisotropic diffusion in a finite cylinder,
- with geochemical applications. Geochimica et Cosmochimica Acta, 74, 614-633.
- 748 Wong, L., Davis, D.W., Krogh, T.E., and Robert, F. (1991) U-Pb zircon and rutile chronology of
- Archean greenstone formation and gold mineralisation in the Val d'Or region, Quebec. Earth
- and Planetary Science Letters, 104, 325-336.

- 751 Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E., and Toriumi, M. (2000) Silicon self-diffusion
- in MgSiO<sub>3</sub> perovskite at 25 GPa. Physics of Earth and Planetary Interiors, 119, 299-309.
- 753 Zack, T., Kronz, A., Foley, S.F., and Rivers, T. (2002) Trace element abundances in rutiles from
- eclogites and associated garnet mica schists. Chemical Geology, 184, 97-122.
- 755 Zack, T., von Eynatten, H., Kronz, A. (2004a). Rutile geochemistry and its potential use in
- quantitative provenance studies. Sedimentary Geology 171, 37–58.
- 757 Zack, T., Moraes, R., and Kronz, A. (2004b) Temperature dependence of Zr in rutile: empirical
- calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471-488.
- 759 Zener, C. (1952) Theory of diffusion. In: Shockley, W., Hollomon, J.H., Maurer, R., and Seitz,
- F. (eds.), Imperfections in Nearly Perfect Crystals, Wiley, New York, pp. 289-314.
- 761 Zhu, L., Ackland, G., Hu, Q.-M., Zhou, J., and Sun, Z. (2017) Origin of the abnormal diffusion
- of transition metal atoms in rutile. Physical Review, B 95, 245201.
- 763 Zhukova, I., O'Neill, H., and Campbell, I.H. (2017) A subsidiary fast-diffusing substitution
- 764 mechanism of Al in forsterite investigated using diffusion experiments under controlled
- thermodynamic conditions. Contributions to Mineralogy and Petrology, 172, 53.
- 766 Ziegler, J.F., and Biersack, J.P. (2006) The stopping and range of ions in matter. Computer code
- 767 SRIM 2006, http://www.srim.org.

#### 774 Table 1. Trace and minor element compositions of rutile

| monn Bri ror mio w | marybeb             |                  |
|--------------------|---------------------|------------------|
| Element (ppm)      | Natural Rutile (PA) | Synthetic Rutile |
| Al                 | $330 \pm 25$        | $26 \pm 9$       |
| V                  | $1326 \pm 32$       |                  |
| Cr                 | $538 \pm 24$        |                  |
| Fe                 | $3063 \pm 220$      | $8 \pm 4$        |
| Ni                 | $279 \pm 26$        |                  |
| Zr                 | $113 \pm 6$         |                  |
| Nb                 | $2738 \pm 101$      |                  |
| Hf                 | $5.9 \pm 0.3$       |                  |
| Та                 | $119 \pm 3$         |                  |
| W                  | $65 \pm 3$          |                  |

from LA-ICPMS analyses 775

776

779

780

# 781 Table 2. Al Diffusion in Rutile

|              | $T(^{o}C)$                                                                                                                                                                                                                                                                             | time(sec)                                                                                                                                                                                                                                                    | $D(m^2 sec^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | log D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | buffer                                                 | $C_o^{\dagger}$                                        | source*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| normal to (l | 001):                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RuAl-11      | 1100                                                                                                                                                                                                                                                                                   | $1.72 \times 10^{6}$                                                                                                                                                                                                                                         | 3.78x10 <sup>-23</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 0.69                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-7       | 1151                                                                                                                                                                                                                                                                                   | 9.43x10 <sup>5</sup>                                                                                                                                                                                                                                         | 3.93x10 <sup>-22</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -21.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 3.91                                                   | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RuAl-10      | 1150                                                                                                                                                                                                                                                                                   | 7.83x10 <sup>5</sup>                                                                                                                                                                                                                                         | 3.84x10 <sup>-22</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -21.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 0.73                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-24      | 1150                                                                                                                                                                                                                                                                                   | 3.51x10 <sup>5</sup>                                                                                                                                                                                                                                         | 1.99x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IW                                                     | 3.81                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-1       | 1200                                                                                                                                                                                                                                                                                   | $4.28 \times 10^{5}$                                                                                                                                                                                                                                         | $1.64 \times 10^{-21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UB                                                     | 6.89                                                   | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RuAl-2       | 1200                                                                                                                                                                                                                                                                                   | $2.59 \times 10^{5}$                                                                                                                                                                                                                                         | 2.26x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 5.71                                                   | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RuAl-9       | 1200                                                                                                                                                                                                                                                                                   | $4.18 \times 10^{5}$                                                                                                                                                                                                                                         | 1.76x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 1.05                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-20      | 1200                                                                                                                                                                                                                                                                                   | 2.59x10 <sup>5</sup>                                                                                                                                                                                                                                         | 1.30x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 5.64                                                   | 10:1 + Nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RuAl-3       | 1250                                                                                                                                                                                                                                                                                   | $1.67 \times 10^5$                                                                                                                                                                                                                                           | 7.38x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 7.65                                                   | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RuAl-16      | 1250                                                                                                                                                                                                                                                                                   | 8.64x10 <sup>4</sup>                                                                                                                                                                                                                                         | $1.02 \times 10^{-20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 3.81                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-12      | 1250                                                                                                                                                                                                                                                                                   | 1.66x10 <sup>5</sup>                                                                                                                                                                                                                                         | 8.01x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 4.60                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-15      | 1250                                                                                                                                                                                                                                                                                   | 5.45x10 <sup>5</sup>                                                                                                                                                                                                                                         | 6.48x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 1.42                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-19      | 1250                                                                                                                                                                                                                                                                                   | $2.02 \times 10^5$                                                                                                                                                                                                                                           | 9.33x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UB                                                     | 2.02                                                   | $Al_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RuAl-23      | 1250                                                                                                                                                                                                                                                                                   | 5.45x10 <sup>5</sup>                                                                                                                                                                                                                                         | 2.03x10 <sup>-20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IW                                                     | 5.16                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-4       | 1300                                                                                                                                                                                                                                                                                   | $6.84 \times 10^4$                                                                                                                                                                                                                                           | 2.89x10 <sup>-20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 9.97                                                   | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RuAl-13      | 1300                                                                                                                                                                                                                                                                                   | 9.24x10 <sup>4</sup>                                                                                                                                                                                                                                         | 2.87x10 <sup>-20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 3.70                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-6       | 1350                                                                                                                                                                                                                                                                                   | $5.04 \times 10^4$                                                                                                                                                                                                                                           | 7.12x10 <sup>-20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 7.65                                                   | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RuAl-14      | 1350                                                                                                                                                                                                                                                                                   | $5.40 \times 10^4$                                                                                                                                                                                                                                           | 6.18x10 <sup>-20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 4.05                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-22      | 1350                                                                                                                                                                                                                                                                                   | $6.12 \times 10^4$                                                                                                                                                                                                                                           | 2.22x10 <sup>-19</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -18.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IW                                                     | 7.13                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-5       | 1400                                                                                                                                                                                                                                                                                   | $1.80 \times 10^{4}$                                                                                                                                                                                                                                         | 5.50x10 <sup>-19</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -18.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 4.50                                                   | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (100)        |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RuAl-17      | 1200                                                                                                                                                                                                                                                                                   | 3.35x10 <sup>5</sup>                                                                                                                                                                                                                                         | 2.14x10 <sup>-21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 1.07                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RuAl-18      | 1300                                                                                                                                                                                                                                                                                   | 7.56x10 <sup>4</sup>                                                                                                                                                                                                                                         | 4.89x10 <sup>-20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNO                                                    | 1.14                                                   | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | normal to ((<br>RuAl-11<br>RuAl-7<br>RuAl-10<br>RuAl-24<br>RuAl-2<br>RuAl-2<br>RuAl-20<br>RuAl-20<br>RuAl-20<br>RuAl-3<br>RuAl-16<br>RuAl-12<br>RuAl-15<br>RuAl-15<br>RuAl-15<br>RuAl-13<br>RuAl-4<br>RuAl-13<br>RuAl-6<br>RuAl-14<br>RuAl-22<br>RuAl-5<br>(100)<br>RuAl-17<br>RuAl-18 | T(°C)normal to (001):RuAl-111100RuAl-71151RuAl-101150RuAl-241150RuAl-241150RuAl-21200RuAl-21200RuAl-91200RuAl-201200RuAl-31250RuAl-161250RuAl-151250RuAl-151250RuAl-191250RuAl-131300RuAl-41300RuAl-41300RuAl-61350RuAl-141350RuAl-51400(100)1200RuAl-181300 | $T(^{\circ}C)$ time(sec)normal to (001):RuAl-111100 $1.72 \times 10^{6}$ RuAl-111100 $1.72 \times 10^{6}$ RuAl-71151 $9.43 \times 10^{5}$ RuAl-101150 $7.83 \times 10^{5}$ RuAl-241150 $3.51 \times 10^{5}$ RuAl-241150 $3.51 \times 10^{5}$ RuAl-241150 $3.51 \times 10^{5}$ RuAl-241150 $3.51 \times 10^{5}$ RuAl-21200 $4.28 \times 10^{5}$ RuAl-21200 $2.59 \times 10^{5}$ RuAl-21200 $2.59 \times 10^{5}$ RuAl-201200 $2.59 \times 10^{5}$ RuAl-31250 $1.67 \times 10^{5}$ RuAl-161250 $8.64 \times 10^{4}$ RuAl-161250 $5.45 \times 10^{5}$ RuAl-151250 $5.45 \times 10^{5}$ RuAl-131300 $9.24 \times 10^{4}$ RuAl-131300 $9.24 \times 10^{4}$ RuAl-141350 $5.40 \times 10^{4}$ RuAl-141350 $5.40 \times 10^{4}$ RuAl-141350 $5.40 \times 10^{4}$ RuAl-121200 $3.35 \times 10^{5}$ RuAl-141350 $5.40 \times 10^{4}$ RuAl-171200 $3.35 \times 10^{5}$ RuAl-171200 $3.35 \times 10^{5}$ RuAl-171200 $3.35 \times 10^{5}$ | $T(^{o}C)$ time(sec) $D(m^{2}sec^{-1})$ normal to (001):RuAl-111100 $1.72x10^{6}$ $3.78x10^{-23}$ RuAl-71151 $9.43x10^{5}$ $3.93x10^{-22}$ RuAl-71150 $7.83x10^{5}$ $3.94x10^{-22}$ RuAl-101150 $7.83x10^{5}$ $3.84x10^{-22}$ RuAl-241150 $3.51x10^{5}$ $1.99x10^{-21}$ RuAl-21200 $4.28x10^{5}$ $1.64x10^{-21}$ RuAl-21200 $2.59x10^{5}$ $2.26x10^{-21}$ RuAl-201200 $2.59x10^{5}$ $1.30x10^{-21}$ RuAl-31250 $1.67x10^{5}$ $7.38x10^{-21}$ RuAl-161250 $8.64x10^{4}$ $1.02x10^{-20}$ RuAl-161250 $5.45x10^{5}$ $6.48x10^{-21}$ RuAl-151250 $5.45x10^{5}$ $6.48x10^{-21}$ RuAl-121250 $5.45x10^{5}$ $6.48x10^{-21}$ RuAl-131300 $9.24x10^{4}$ $2.89x10^{-20}$ RuAl-131300 $9.24x10^{4}$ $2.87x10^{-20}$ RuAl-61350 $5.04x10^{4}$ $7.12x10^{-20}$ RuAl-61350 $5.04x10^{4}$ $5.50x10^{-19}$ RuAl-141350 $5.40x10^{4}$ $5.50x10^{-19}$ RuAl-51400 $1.80x10^{4}$ $5.50x10^{-19}$ RuAl-171200 $3.35x10^{5}$ $2.14x10^{-21}$ <t< td=""><td><math>T(^{o}C)</math>time(sec)<math>D(m^2sec^{-1})</math>log Dnormal to (001):RuAl-111100<math>1.72x10^6</math><math>3.78x10^{-23}</math><math>-22.42</math>RuAl-111150<math>7.83x10^5</math><math>3.93x10^{-22}</math><math>-21.41</math>RuAl-101150<math>7.83x10^5</math><math>3.93x10^{-22}</math><math>-21.42</math>RuAl-101150<math>7.83x10^5</math><math>3.84x10^{-22}</math><math>-21.42</math>RuAl-241150<math>3.51x10^5</math><math>1.99x10^{-21}</math><math>-20.70</math>RuAl-21200<math>4.28x10^5</math><math>1.64x10^{-21}</math><math>-20.78</math>RuAl-21200<math>2.59x10^5</math><math>2.26x10^{-21}</math><math>-20.65</math>RuAl-201200<math>2.59x10^5</math><math>1.30x10^{-21}</math><math>-20.75</math>RuAl-201200<math>2.59x10^5</math><math>1.30x10^{-21}</math><math>-20.89</math>RuAl-31250<math>1.67x10^5</math><math>7.38x10^{-21}</math><math>-20.13</math>RuAl-161250<math>8.64x10^4</math><math>1.02x10^{-20}</math><math>-19.99</math>RuAl-121250<math>1.66x10^5</math><math>8.01x10^{-21}</math><math>-20.10</math>RuAl-121250<math>5.45x10^5</math><math>2.03x10^{-20}</math><math>-19.99</math>RuAl-131300<math>6.84x10^4</math><math>2.89x10^{-20}</math><math>-19.54</math>RuAl-131300<math>9.24x10^4</math><math>2.87x10^{-20}</math><math>-19.54</math>RuAl-141350<math>5.40x10^4</math><math>6.18x10^{-20}</math><math>-19.54</math>RuAl-141350<math>5.40x10^4</math><math>6.18x10^{-20}</math><math>-19.21</math>Ru</td><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td><math>T(^{\circ}C)</math>time(sec)<math>D(m^2sec^{-1})</math>log D+/-buffer<math>C_o^{\dagger}</math>normal to (001):RuAl-111100<math>1.72x10^6</math><math>3.78x10^{-23}</math><math>-22.42</math><math>0.41</math>NNO<math>0.69</math>RuAl-71151<math>9.43x10^5</math><math>3.93x10^{-22}</math><math>-21.41</math><math>0.17</math>NNO<math>3.91</math>RuAl-101150<math>7.83x10^5</math><math>3.84x10^{-22}</math><math>-21.42</math><math>0.34</math>NNO<math>0.73</math>RuAl-241150<math>3.51x10^5</math><math>1.99x10^{-21}</math><math>-20.70</math><math>0.16</math>IW<math>3.81</math>RuAl-21200<math>2.59x10^5</math><math>2.26x10^{-21}</math><math>-20.65</math><math>0.16</math>NNO<math>5.71</math>RuAl-91200<math>4.18x10^5</math><math>1.76x10^{-21}</math><math>-20.75</math><math>0.25</math>NNO<math>1.05</math>RuAl-201200<math>2.59x10^5</math><math>1.30x10^{-21}</math><math>-20.89</math><math>0.17</math>NNO<math>5.64</math>RuAl-201200<math>2.59x10^5</math><math>1.30x10^{-21}</math><math>-20.13</math><math>0.15</math>NNO<math>7.65</math>RuAl-121250<math>1.67x10^5</math><math>7.38x10^{-21}</math><math>-20.13</math><math>0.15</math>NNO<math>7.65</math>RuAl-121250<math>5.45x10^5</math><math>6.48x10^{-21}</math><math>-20.13</math><math>0.15</math>NNO<math>1.42</math>RuAl-131250<math>5.45x10^5</math><math>6.48x10^{-21}</math><math>-20.13</math><math>0.15</math>NNO<math>1.42</math>RuAl-141300<math>6.84x10^4</math><math>1.02x10^{-20}</math><math>-19.99</math><math>0.14</math>NNO<math>4.60</math>RuAl-151250<math>5.45x10^5</math><math>2.03x10^{-21}</math><math>-20.19</math><math>0.13</math>NNO<math>1.42</math>RuAl-161350<math>5.04x1</math></td></t<> | $T(^{o}C)$ time(sec) $D(m^2sec^{-1})$ log Dnormal to (001):RuAl-111100 $1.72x10^6$ $3.78x10^{-23}$ $-22.42$ RuAl-111150 $7.83x10^5$ $3.93x10^{-22}$ $-21.41$ RuAl-101150 $7.83x10^5$ $3.93x10^{-22}$ $-21.42$ RuAl-101150 $7.83x10^5$ $3.84x10^{-22}$ $-21.42$ RuAl-241150 $3.51x10^5$ $1.99x10^{-21}$ $-20.70$ RuAl-21200 $4.28x10^5$ $1.64x10^{-21}$ $-20.78$ RuAl-21200 $2.59x10^5$ $2.26x10^{-21}$ $-20.65$ RuAl-201200 $2.59x10^5$ $1.30x10^{-21}$ $-20.75$ RuAl-201200 $2.59x10^5$ $1.30x10^{-21}$ $-20.89$ RuAl-31250 $1.67x10^5$ $7.38x10^{-21}$ $-20.13$ RuAl-161250 $8.64x10^4$ $1.02x10^{-20}$ $-19.99$ RuAl-121250 $1.66x10^5$ $8.01x10^{-21}$ $-20.10$ RuAl-121250 $5.45x10^5$ $2.03x10^{-20}$ $-19.99$ RuAl-131300 $6.84x10^4$ $2.89x10^{-20}$ $-19.54$ RuAl-131300 $9.24x10^4$ $2.87x10^{-20}$ $-19.54$ RuAl-141350 $5.40x10^4$ $6.18x10^{-20}$ $-19.54$ RuAl-141350 $5.40x10^4$ $6.18x10^{-20}$ $-19.21$ Ru | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $T(^{\circ}C)$ time(sec) $D(m^2sec^{-1})$ log D+/-buffer $C_o^{\dagger}$ normal to (001):RuAl-111100 $1.72x10^6$ $3.78x10^{-23}$ $-22.42$ $0.41$ NNO $0.69$ RuAl-71151 $9.43x10^5$ $3.93x10^{-22}$ $-21.41$ $0.17$ NNO $3.91$ RuAl-101150 $7.83x10^5$ $3.84x10^{-22}$ $-21.42$ $0.34$ NNO $0.73$ RuAl-241150 $3.51x10^5$ $1.99x10^{-21}$ $-20.70$ $0.16$ IW $3.81$ RuAl-21200 $2.59x10^5$ $2.26x10^{-21}$ $-20.65$ $0.16$ NNO $5.71$ RuAl-91200 $4.18x10^5$ $1.76x10^{-21}$ $-20.75$ $0.25$ NNO $1.05$ RuAl-201200 $2.59x10^5$ $1.30x10^{-21}$ $-20.89$ $0.17$ NNO $5.64$ RuAl-201200 $2.59x10^5$ $1.30x10^{-21}$ $-20.13$ $0.15$ NNO $7.65$ RuAl-121250 $1.67x10^5$ $7.38x10^{-21}$ $-20.13$ $0.15$ NNO $7.65$ RuAl-121250 $5.45x10^5$ $6.48x10^{-21}$ $-20.13$ $0.15$ NNO $1.42$ RuAl-131250 $5.45x10^5$ $6.48x10^{-21}$ $-20.13$ $0.15$ NNO $1.42$ RuAl-141300 $6.84x10^4$ $1.02x10^{-20}$ $-19.99$ $0.14$ NNO $4.60$ RuAl-151250 $5.45x10^5$ $2.03x10^{-21}$ $-20.19$ $0.13$ NNO $1.42$ RuAl-161350 $5.04x1$ |

\* 3:1 - 3:1 ratio (by wt.) TiO<sub>2</sub>: Al<sub>2</sub>O<sub>3</sub>; 10:1 - 10:1 ratio (by wt.) TiO<sub>2</sub>: Al<sub>2</sub>O<sub>3</sub>

785 † surface concentration in at. percent

| This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) |
|------------------------------------------------------------------------------------------------|
| Cite as Authors (Year) Title. American Mineralogist, in press.                                 |
| DOI: https://doi.org/10.2138/am-2019-7030                                                      |

|             | $T(^{o}C)$  | time(sec)            | $D(m^2 sec^{-1})$      | log D  | +/-  | buffer | $C_o^{\dagger}$ | source                             | • |
|-------------|-------------|----------------------|------------------------|--------|------|--------|-----------------|------------------------------------|---|
| normal to ( | 001):       | · · ·                |                        |        |      |        |                 |                                    |   |
| RuSi-38     | 1100        | 9.49x10 <sup>5</sup> | 2.02x10 <sup>-22</sup> | -21.69 | 0.40 | NNO    | 0.63            | diff couple                        |   |
| RuSi-11     | 1149        | 9.50x10 <sup>5</sup> | 5.50x10 <sup>-22</sup> | -21.26 | 0.34 | UB     | 1.89            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-34     | 1151        | 5.11x10 <sup>5</sup> | 6.76x10 <sup>-22</sup> | -21.17 | 0.39 | NNO    | 0.99            | diff couple                        |   |
| RuSi-42     | 1150        | $3.51 \times 10^{5}$ | 2.92x10 <sup>-21</sup> | -20.53 | 0.17 | IW     | 3.81            | diff couple                        |   |
| RuSi-1      | 1200        | $3.53 \times 10^{5}$ | 6.39x10 <sup>-22</sup> | -21.19 | 0.35 | UB     | 1.09            | SiO <sub>2</sub>                   |   |
| RuSi-31     | 1200        | $2.82 \times 10^{5}$ | 1.56x10 <sup>-21</sup> | -20.81 | 0.34 | UB     | 0.69            | diff couple                        |   |
| RuSi-32     | 1200        | $2.48 \times 10^5$   | $1.52 \times 10^{-21}$ | -20.82 | 0.23 | NNO    | 1.73            | diff couple                        |   |
| RuSi-2      | 1250        | 1.98x10 <sup>5</sup> | 1.30x10 <sup>-21</sup> | -20.88 | 0.20 | UB     | 1.74            | SiO <sub>2</sub>                   |   |
| RuSi-37     | 1250        | $2.45 \times 10^{5}$ | 9.36x10 <sup>-22</sup> | -21.03 | 0.21 | NNO    | 4.15            | diff couple                        |   |
| RuSi-41     | 1250        | 2.56x10 <sup>5</sup> | 1.31x10 <sup>-20</sup> | -19.88 | 0.20 | IW     | 2.99            | diff couple                        |   |
| RuSi-3      | 1301        | 7.56x10 <sup>4</sup> | 3.36x10 <sup>-21</sup> | -20.47 | 0.20 | UB     | 1.66            | $SiO_2$                            |   |
| RuSi-4      | 1301        | $6.84 \times 10^4$   | 3.97x10 <sup>-21</sup> | -20.40 | 0.31 | UB     | 1.15            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-20     | 1299        | 5.83x10 <sup>5</sup> | 2.15x10 <sup>-21</sup> | -20.67 | 0.18 | UB     | 3.46            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-21     | 1299        | $2.54 \times 10^{5}$ | 2.43x10 <sup>-21</sup> | -20.61 | 0.18 | UB     | 3.34            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-28     | 1300        | $8.64 \times 10^4$   | 8.85x10 <sup>-21</sup> | -20.05 | 0.29 | UB     | 0.94            | $SiO_2$                            |   |
| RuSi-35     | 1300        | $8.64 \times 10^4$   | 2.30x10 <sup>-21</sup> | -20.64 | 0.44 | NNO    | 2.19            | diff couple                        |   |
| RuSi-7      | 1351        | 5.76x10 <sup>4</sup> | 8.23x10 <sup>-21</sup> | -20.08 | 0.18 | UB     | 4.12            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-36     | 1350        | 7.56x10 <sup>4</sup> | 3.79x10 <sup>-21</sup> | -20.42 | 0.14 | NNO    | 7.17            | diff couple                        |   |
| RuSi-40     | 1350        | 7.56x10 <sup>4</sup> | 4.41x10 <sup>-20</sup> | -19.36 | 0.27 | IW     | 1.40            | diff couple                        |   |
| RuSi-6      | 1400        | $1.44 \times 10^4$   | 1.19x10 <sup>-20</sup> | -19.92 | 0.20 | UB     | 4.88            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-39     | 1400        | $1.44 \times 10^4$   | 1.78x10 <sup>-20</sup> | -19.75 | 0.29 | NNO    | 4.98            | diff couple                        |   |
| RuSi-8      | 1450        | $7.20 \times 10^3$   | 2.22x10 <sup>-20</sup> | -19.65 | 0.19 | UB     | 8.96            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| normal to ( | (100):      |                      |                        |        |      |        |                 |                                    |   |
| RuSi-10     | 1200        | $3.46 \times 10^5$   | 4.80x10 <sup>-22</sup> | -21.32 | 0.29 | UB     | 0.77            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-13     | 1299        | 9.00x10 <sup>4</sup> | 5.00x10 <sup>-21</sup> | -20.30 | 0.30 | UB     | 0.64            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| RuSi-19     | 1399        | $5.94 \times 10^4$   | $1.22 \times 10^{-20}$ | -19.91 | 0.28 | UB     | 1.19            | TiO <sub>2</sub> :SiO <sub>2</sub> |   |
| natural rut | ile, cut pa | rallel to c:         |                        |        |      |        |                 |                                    |   |
| NRuSi-9     | 1150        | $4.28 \times 10^5$   | 3.26x10 <sup>-22</sup> | -21.49 | 0.46 | NNO    | 0.95            | diff couple                        |   |
| NRuSi-8     | 1250        | $6.48 \times 10^4$   | 3.02x10 <sup>-21</sup> | -20.52 | 0.38 | NNO    | 0.96            | diff couple                        |   |
| NRuSi-10    | 1350        | $1.62 \times 10^4$   | 1.35x10 <sup>-20</sup> | -19.87 | 0.18 | NNO    | 4.78            | diff couple                        |   |

## 787 Table 3. Si Diffusion in Rutile

791 † surface concentration in at. percent

## 795 Captions for figures

Figure 1. Example Al (a) and Si (b) diffusion profiles for rutile. The Al experiment (on synthetic rutile, with diffusion normal to (001)) was run at 1400°C for 5h. Profiles from both RBS and NRA, using the  ${}^{27}$ Al(p, $\gamma$ ) ${}^{28}$ Si reaction, are plotted. The Si profiles are from an experiment on synthetic rutile run at 1350°C for 16h (grey symbols), and for an experiment on natural rutile run for 4.5h at 1350°C (white symbols).

801

802 Figure 2. Arrhenius plot of Al diffusion data for rutile. For diffusion normal to (001), for

803 experiments buffered at NNO, we obtain an activation energy of  $531 \pm 27$  kJ mol<sup>-1</sup> and pre-

804 exponential factor of  $1.21 \times 10^{-2} \text{ m}^2 \text{s}^{-1}$  (log D<sub>o</sub> =  $-1.92 \pm 0.92$ ). There appears to be little

anisotropy when comparing diffusion normal to (001) and (100). Diffusion under IW-buffered

806 conditions is faster by about half a log unit.

807

808 Figure 3. Arrhenius plot of Si diffusion data for synthetic and natural rutile. For Si diffusion

809 perpendicular to (001) in synthetic rutile under unbuffered conditions, we obtain an activation

810 energy of  $275 \pm 45$  kJ mol<sup>-1</sup> and a pre-exponential factor  $4.41 \times 10^{-12}$  m<sup>2</sup>s<sup>-1</sup> (log D<sub>o</sub> = -11.36 ±

811 1.38). There is little evidence of diffusional anisotropy when comparing diffusivities normal to

812 (100) and (001). For diffusion under NNO-buffered conditions in synthetic rutile, normal to

813 (001), an activation energy of  $216 \pm 48$  kJ mol<sup>-1</sup> and a pre-exponential factor  $4.07 \times 10^{-14}$  m<sup>2</sup>s<sup>-1</sup>

814  $(\log D_0 = -13.39 \pm 1.62)$  are obtained; a fit to both the NNO- buffered and unbuffered data results

in an activation energy of  $254 \pm 31$  kJ mol<sup>-1</sup> and a pre-exponential factor  $8.53 \times 10^{-13}$  m<sup>2</sup>s<sup>-1</sup> (log D<sub>o</sub>

 $= -12.07 \pm 1.03$ ). Diffusivities of Si in natural rutile under NNO-buffered conditions do not differ

significantly from those obtained for NNO-buffered synthetic rutile, indicating that differences in

| 818 | trace and minor element compositions between the synthetic and natural materials have little                           |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 819 | effect on diffusion. Like Al, Si diffusion exhibits a negative dependence on oxygen fugacity;                          |
| 820 | diffusivities under IW-buffered conditions are ~three quarters of a log unit faster than under                         |
| 821 | NNO-buffered conditions.                                                                                               |
| 822 |                                                                                                                        |
| 823 | Figure 4. Time series for Al (a) and Si (b) at 1250°C and 1300°C, respectively. For both                               |
| 824 | elements, diffusivities are quite similar over times varying by more than a factor of 6, suggesting                    |
| 825 | that volume diffusion is the dominant contributor to the observed diffusion profiles.                                  |
| 826 |                                                                                                                        |
| 827 | Figure 5. Selected cation diffusion data for rutile. Sources for data: Cr, Fe - Sasaki et al. (1985);                  |
| 828 | Ti- Akse and Whitehurst, 1978; Nb, Ta - Marschall et al. (2013); Hf, Zr - Cherniak et al (2007);                       |
| 829 | Pb - Cherniak (2000); Al, Si - this study.                                                                             |
| 830 |                                                                                                                        |
| 831 | Figure 6. (a) Al diffusion data for selected minerals. Sources for data: quartz - Tailby et al.,                       |
| 832 | 2018; forsterite - Zhukova et al., 2017; MgO - Van Orman et al., 2009; Al <sub>2</sub> O <sub>3</sub> - LeGall et al., |
| 833 | 1994; Paladino and Kingery, 1962; magnetite - Dieckmann et al. 1978; mullite - Fielitz et al.,                         |
| 834 | 2006. (b) Si diffusion data for selected minerals. Sources for data: quartz, anorthite, labradorite -                  |
| 835 | Cherniak, 2003; zircon - Cherniak, 2008; forsterite - Jaoul et al., 1981; olivine - Dohmen et al,                      |
| 836 | 2002; MgO - Sakaguchi et al., 1992; diopside - Béjina and Jaoul, 1996; perovskite - Yamazaki et                        |
| 837 | al. , 2000.                                                                                                            |
| 838 |                                                                                                                        |
| 839 | Figure 7. Plot of activation energy (in kJ mol <sup>-1</sup> ) vs. the log of the pre-exponential factor $D_o$ ,       |

840 showing that Si diffusion data for silicates conform well to the linear 'diffusion compensation'

| 841 | relation outlined by Bejina and Jaoul (1997) and Cherniak (2008). The compensation line can be               |
|-----|--------------------------------------------------------------------------------------------------------------|
| 842 | described by the equation $E = 647.7 + 30.5 \text{*} \log D_o$ . Data plotted are from Bejina and Jaoul      |
| 843 | (1997) and Cherniak (2008). Results for Si diffusion in rutile from the present study (dark                  |
| 844 | squares) are also plotted. These fall closely along the diffusion compensation trend, as does that           |
| 845 | for Si diffusion in MgO (white square).                                                                      |
| 846 |                                                                                                              |
| 847 | Figure 8. Summary of data for diffusion of mineral-element pairs employed in selected                        |
| 848 | crystallization geothermometers. Sources for data: Ti - zircon: Cherniak and Watson (2007); Zr               |
| 849 | - rutile: Cherniak et al. (2007a); Zr- titanite; Cherniak (2006); Ti - quartz: Cherniak et al.               |
| 850 | (2007b); Al - rutile: this study.                                                                            |
| 851 |                                                                                                              |
| 852 | Figure 9. Curves representing time-temperature conditions for mineral-element pairs used in                  |
| 853 | crystallization thermometers under which Ti, Zr, Al or Si signatures at the center of grains will            |
| 854 | be lost. For times and temperatures below the curves, concentrations at crystal cores will remain            |
| 855 | unaffected, but will be influenced by the surrounding medium when conditions above the curves                |
| 856 | apply. In calculations, diffusivities from the Arrhenius relations plotted in Figure 8 are used, and         |
| 857 | effective diffusion radii differing with mineral type are selected to reflect grain sizes typical for        |
| 858 | each mineral: 50 $\mu$ m for zircon, 0.5 mm for quartz, and 250 $\mu$ m for both rutile and titanite. Rutile |
| 859 | will be considerably more retentive of Al compositions at grain centers than Zr; for example, at             |
| 860 | 900°C, Zr signatures would be altered in times of ~ 300,000 years, while Al signatures would be              |
| 861 | preserved at this temperature over times on order 3 billion years.                                           |
| 862 |                                                                                                              |

| 863 | Figure 10. Results of diffusion calculations for a cylindrical model rutile crystal 200 $\mu$ m in      |
|-----|---------------------------------------------------------------------------------------------------------|
| 864 | diameter and 600 $\mu$ m long. The cylinder axis (dashed line) lies in the plane of the panels, which   |
| 865 | are contoured to show the diffusional response of Si, Al and Zr at the temperatures indicated for       |
| 866 | a holding time of 10 million years. Contours represent % retention of the original element              |
| 867 | concentration at a given axial and radial location within the crystal. The contour interval is 10%;     |
| 868 | the innermost contour represents 90% retention except where indicated otherwise. F is the               |
| 869 | fraction of the element retained in the bulk crystal. The three temperatures modeled for each           |
| 870 | element were chosen to show the transition from essentially closed-system behavior (F $>$ 0.9; top      |
| 871 | row) to severely compromised elemental concentrations (bottom row). See text for details.               |
| 872 |                                                                                                         |
| 873 | Figure 11. Conditions for diffusive "opening" (defined as loss of 1% of the diffusant) and center       |
| 874 | retention (equivalent to preservation of initial composition at grain center, but 50% loss of           |
| 875 | diffusant) for Al, Pb, Si and Zr in rutile in the case of linear heating. Calculations are performed    |
| 876 | using equation 1, a linear heating rate of 10°C/Ma, the appropriate values of the constant $\chi_h$ for |
| 877 | each criterion, and the diffusion parameters plotted in Figure 5. These calculations again              |
| 878 | illustrate the relative robustness of Al chemical signatures in rutile.                                 |
| 879 |                                                                                                         |























