1	7007R: Correction date 12	/16/2019
2	Texture co	onstraints on crystal size distribution methodology:
3	A	an application to the Laki fissure eruption
4		
5	Kim A. Cone, ^{1*} Ric	chard F. Wendlandt ¹ , Katharina Pfaff ¹ , Omero F. Orlandini ²
6		
7	¹ Department of Geology an	d Geological Engineering, Colorado School of Mines, 1516 Illinois
8		Street, Golden, Colorado, 80401, U.S.A.
9		
10	² Geological Sciences, Uni	versity of Colorado Boulder, UCB 399, Boulder, Colorado, 80309,
11		U.S.A.
12		
13	*Corresponding author: Dep	artment of Geology and Geological Engineering, Colorado School of
14]	Mines, Golden, Colorado, 80401, U.S.A.
15		Email: <u>kimacone@gmail.com</u>
16		
17	Number of words (abstract):	322
18	Number of words (post-abstr	ract and pre-reference sections): 8374
19		
20	Kim A. Cone	kcone@mines.edu
21	Richard F. Wendlandt	rwendlan@mines.edu
22	Katharina Pfaff	kpfaff@mines.edu
23	Omero F. Orlandini	omero.orlandini@colorado.edu

24

25

ABSTRACT

26 Modelling crystal size distributions often requires the extraction of 2D discrete crystal lengths in 27 order to calculate 3D volumetric equivalences. These apparent lengths are obtained from digital 28 images that exploit different physical and chemical characteristics of samples, and the choice of 29 image type can affect the interpretation of crystal length measurements, thus affecting crystal size distribution modelling. To examine method- and texture-based effects on extracting crystal 30 31 size distributions, we obtained plagioclase length measurements from two basaltic lava samples 32 with different phenocryst volumes and contiguity styles, from the well-documented Laki fissure 33 eruptions of 1783-1784. Using approaches that consider inherent texture-based limitations of 2D 34 image types, we employed manual tracing and imaging software to extract plagioclase crystal 35 lengths from three types of images: 1) photomicrographs from polarized-light microscopy, 2) 36 backscatter electron images from scanning electron microscopy, and 3) energy-dispersive X-ray 37 maps from automated mineralogy. Our results demonstrate that 1) phenocrysts ($L \ge 150 \mu m$) 38 and groundmass plagioclase ($L < 150 \mu m$) in our basalt samples appear with multiple aspect 39 ratios, while the latter also display greater nucleation densities as crystal size population are 40 continuously refined over increasingly smaller crystal lengths; 2) complex crystal clusters must 41 be manually dissected into their discrete crystal components to produce meaningful crystal size 42 distributions; 3) localized electron backscatter diffraction analysis reveals mild preferred 43 orientation in complex clusters and groundmass, the latter confirmed by variations in crystal size 44 distributions between orthogonal backscatter electron images; and 4) method-induced variations 45 in both aspect ratio and crystal length determination can produce a wide range of kinetic 46 interpretations that pose challenges for cross-research comparisons. For phenocrysts,

47	compensating for clustering and fracturing through manual tracing remains the most effective
48	method, while groundmass populations can be addressed with high-resolution (micron-scale)
49	automated scanning electron microscopy for deciphering late-stage eruptive behavior. A texture-
50	focused protocol should be established, as any kinetic information derived from crystal size
51	distribution analyses across multiple studies employing multiple approaches cannot otherwise be
52	directly compared.
53	
54	Keywords: plagioclase, crystal size distributions, aspect ratio, basalt, textural analysis,
55	crystallization kinetics, automated mineralogy, EBSD, Laki
56	
57	INTRODUCTION
58	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated
58 59	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as
58 59 60	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization
58 59 60 61	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization histories and the extent to which crystallization reflects dynamic processes such as fractionation
58 59 60 61 62	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization histories and the extent to which crystallization reflects dynamic processes such as fractionation or magma mixing. A common textural investigative tool is the use of crystal size distributions
58 59 60 61 62 63	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization histories and the extent to which crystallization reflects dynamic processes such as fractionation or magma mixing. A common textural investigative tool is the use of crystal size distributions (CSDs) that focus on the most conspicuous aspect of texture – the distribution of crystal sizes
58 59 60 61 62 63 64	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization histories and the extent to which crystallization reflects dynamic processes such as fractionation or magma mixing. A common textural investigative tool is the use of crystal size distributions (CSDs) that focus on the most conspicuous aspect of texture – the distribution of crystal sizes (Cashman and Marsh, 1988; Marsh, 1988, 1998; Higgins, 2000, 2006).
58 59 60 61 62 63 64 65	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization histories and the extent to which crystallization reflects dynamic processes such as fractionation or magma mixing. A common textural investigative tool is the use of crystal size distributions (CSDs) that focus on the most conspicuous aspect of texture – the distribution of crystal sizes (Cashman and Marsh, 1988; Marsh, 1988, 1998; Higgins, 2000, 2006).
58 59 60 61 62 63 64 65 66	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization histories and the extent to which crystallization reflects dynamic processes such as fractionation or magma mixing. A common textural investigative tool is the use of crystal size distributions (CSDs) that focus on the most conspicuous aspect of texture – the distribution of crystal sizes (Cashman and Marsh, 1988; Marsh, 1988, 1998; Higgins, 2000, 2006).
58 59 60 61 62 63 64 65 66 67	Textural analysis of volcanic rock provides insight into crystallization dynamics and associated magmatic environments. Petrologic studies that focus on geochemistry and phase equilibria as the primary means to explore geologic questions can utilize texture to constrain crystallization histories and the extent to which crystallization reflects dynamic processes such as fractionation or magma mixing. A common textural investigative tool is the use of crystal size distributions (CSDs) that focus on the most conspicuous aspect of texture – the distribution of crystal sizes (Cashman and Marsh, 1988; Marsh, 1988, 1998; Higgins, 2000, 2006).

69	seriate textures where crystals nucleate and grow through size populations. This is
70	mathematically and graphically represented by the following power law equation:
71	$n(L) = n^0 e^{-(L/G\tau)} \tag{1}$
72	where $n(L)$ is the population density for crystals of size L (the 3D length, usually converted from
73	2D thin section measurements), G is the average crystal growth rate (assumed constant and
74	derived from experimental values (Kirkpatrick, 1977; Cashman and Marsh, 1988; Cashman,
75	1993)), τ is the residence time, and n^0 is the nucleation density. Other characteristics may be
76	determined from the equation: characteristic length (i.e. average size, C) can be calculated as $G\tau$,
77	an associated regression slope as $-1/C$, and nucleation rate (J) is equivalent to n^0G .
78	Semilogarithmic plotting of population density on the y-axis against corresponding size on the x-
79	axis produces a negatively sloped linear expression. For the population density, the crystal count
80	in each bin from the x-axis is divided by the analyzed area of the thin section on a vesicle-free
81	basis. That value is further divided by the bin width. The result is a population density unit of
82	mm ⁻⁴ . Deviations from this ideal, negative linear slope indicate disruptions to a kinetically-driven
83	system defined by constant nucleation and crystal growth, suggesting one or more crystal
84	populations with different nucleation and growth histories. Geologic context would then dictate
85	probable causes for these deviations.
86	
87	Various aspects of CSD analysis have been examined over the last 30 years since the seminal
88	works of Marsh (1988) and Cashman and Marsh (1988) on the Makaopuhi lava lake, having
89	adapted the idea of crystal population balance from chemical engineering (Randolph and Larson,

90 1971) to igneous systems. Recent topics include confocal microscopy and microlite measurement

91 in thin section (Castro et al., 2003), stereological corrections concerning cut section effects and

92	intersection probability effects (Higgins, 2000, 2006; Mock and Jerram, 2005; Morgan and
93	Jerram, 2006), decompression-induced twinning in plagioclase microlites as revealed by electron
94	backscatter diffraction (EBSD) analysis (Brugger and Hammer, 2015), and most recently the use
95	of automated mineralogy in obtaining CSDs from plagioclase populations in a large volume lava
96	eruption (Neave et al., 2017). There is no established protocol for obtaining crystal size
97	distributions for igneous rock, although certain approaches are shared across studies. Ideally,
98	solid and intact whole-crystals would be removed from a sample and individual crystal volumes
99	determined directly in order to establish a proper CSD (Higgins, 2006). This approach is
100	impractical for most igneous studies and so petrographic thin sections or grayscale backscatter
101	electron (BSE) images often serve as a starting point for extraction of 2D crystal sizes that are
102	then converted to 3D volumetric equivalents. These conversions involve stereological
103	approaches that are also not consistently applied across studies.
104	
104 105	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two
104 105 106	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two texturally different basaltic lavas from the historic Laki fissure eruptions. We utilize both manual
104 105 106 107	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two texturally different basaltic lavas from the historic Laki fissure eruptions. We utilize both manual tracing and four types of digital images in conjunction with imaging software to examine
104 105 106 107 108	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two texturally different basaltic lavas from the historic Laki fissure eruptions. We utilize both manual tracing and four types of digital images in conjunction with imaging software to examine plagioclase crystal length and width measurements, some of which are used to construct CSDs
104 105 106 107 108 109	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two texturally different basaltic lavas from the historic Laki fissure eruptions. We utilize both manual tracing and four types of digital images in conjunction with imaging software to examine plagioclase crystal length and width measurements, some of which are used to construct CSDs that reflect the separation of discrete crystals from glomerocrysts. In related published works,
104 105 106 107 108 109 110	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two texturally different basaltic lavas from the historic Laki fissure eruptions. We utilize both manual tracing and four types of digital images in conjunction with imaging software to examine plagioclase crystal length and width measurements, some of which are used to construct CSDs that reflect the separation of discrete crystals from glomerocrysts. In related published works, phenocrysts that exist as members of either monomineralic or polymineralic clusters have been
104 105 106 107 108 109 110 111	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two texturally different basaltic lavas from the historic Laki fissure eruptions. We utilize both manual tracing and four types of digital images in conjunction with imaging software to examine plagioclase crystal length and width measurements, some of which are used to construct CSDs that reflect the separation of discrete crystals from glomerocrysts. In related published works, phenocrysts that exist as members of either monomineralic or polymineralic clusters have been treated for the purpose of manual tracing as single entities (i.e. the entire cluster is traced as a
104 105 106 107 108 109 110 111 112	The purpose of this work is to explore CSDs using multiple types of imaging techniques for two texturally different basaltic lavas from the historic Laki fissure eruptions. We utilize both manual tracing and four types of digital images in conjunction with imaging software to examine plagioclase crystal length and width measurements, some of which are used to construct CSDs that reflect the separation of discrete crystals from glomerocrysts. In related published works, phenocrysts that exist as members of either monomineralic or polymineralic clusters have been treated for the purpose of manual tracing as single entities (i.e. the entire cluster is traced as a single crystal), which they are clearly not (Cashman and Marsh, 1988; Neave et al., 2013).

114 Textural considerations for CSD analysis

Determining CSDs requires multiple considerations: 1) crystal measurement methods, 2) cut-115 116 section effects, 3) intersection-probability effects, 4) crystal aspect ratios, 5) sufficient sample 117 counts, 6) crystal contiguity, 7) crystal fracturing, 8) crystallographic preferred orientation 118 (CPO), and 9) growth rates (Higgins, 2006). Crystal measurements involve variations of longest-119 length lines or bounding boxes, and length-extraction methods should be based on crystal shapes 120 (Higgins, 2006). Cut-section effects (greatest-length measurements rarely reflect the actual 121 maximum size of a crystal) and intersection-probability effects (smaller crystals are less likely to 122 be intersected than larger ones) are mathematically treated by programs such as CSDCorrections 123 (Higgins, 2000, 2006). Crystal aspect ratios become increasingly important in CSDs the more 124 crystal shapes deviate from a perfect sphere, and CSDSlice is frequently employed to determine 125 a statistical best-fit aspect ratio for a group of crystal measurements based on 10,000 random cuts 126 through > 700 crystal shapes (Morgan and Jerram, 2006). Aspect ratios are a strong function of 127 crystallization time and cooling rate, as demonstrated by Holness (2014) for plagioclase in both 128 basaltic doleritic and extrusive textures, and reflect differential growth rates on plagioclase 129 crystal faces. Sufficient crystal counts are also required for proper aspect ratios, and at least 75 130 crystal sections are required in order to determine a robust best-fit aspect ratio for tabular crystals 131 and at least 250 crystal sections for acicular ones (Morgan and Jerram, 2006). Crystal contiguity 132 (i.e. touching crystals) and crystal fracturing impose opposite effects on crystal counts; the 133 former introduces inflated counts of larger crystals while the latter creates an inflated number of 134 smaller crystals. Both aspects can be addressed to some extent by ImageJ imaging software 135 (Schneider et al., 2012), but due to variability in fracture widths a single filling-in protocol does 136 not adequately address all fracture gap-widths, although manual tracing of a single bounding 137 outline around multiply-fractured crystals adequately addresses this issue. Crystallographic

138	preferred orientation is often visually estimated and treated as random for the purpose of a study
139	in absence of obvious foliation. Orientation effects are one of the least investigated aspects of
140	CSD analysis as they are potentially one of the most difficult and expensive to quantify; properly
141	deciphering the extent of CPO involves electron backscatter diffraction (EBSD) analysis with
142	carefully polished samples using colloidal silica and can be impractical depending on scan-time
143	versus scan-resolution costs. Crystal growth rates pose another challenge to untangling CSDs, as
144	changing degrees of undercooling can force varying growths rates that are then
145	crystallographically controlled (Holness, 2014 and references therein). Plagioclase growth rates
146	have been estimated for low degrees of undercooling as well as for decompression-induced
147	conditions (Hammer et al., 1999; Orlando et al., 2008; Shea and Hammer, 2013), but choosing a
148	single growth rate for a system a priori is not a straightforward process, as multiple growth rates
149	may have been in effect.
150	
151	Image considerations for CSD analysis

152 The most frequently used types of images for crystal measurements are thin section

153 photomicrographs and BSE images. The latter are generated from scanning electron microscopy

154 (SEM) and reflect increasing material atomic weight through increasing grayscale image

brightness. SEM-EDS (energy-dispersive X-ray spectroscopy) imaging is less frequently used

and relies on characteristic X-rays produced within an interaction volume of a sample to produce

157 a false-color elemental distribution map.

158

159 Thin section photomicrographs are the least expensive but potentially the most time-consuming

160 starting image. Manual tracing requirements vary depending on image resolution and the crystal

161 size populations being considered. The digitized tracings or markings are converted to length 162 measurements using software such as ImageJ. The advantage to using thin section images is that 163 manual markings permit user control over crystal fracturing, contiguity issues can be 164 simultaneously addressed by the user manually, and the separation of glomerocrysts into discrete 165 crystals. A potential disadvantage is tied to resolution, where fine-grained groundmass-sized 166 crystals (particularly anhedral ones) may not be readily discernible in lower-resolution images. 167 As with all images, resolution dictates the smallest crystal size populations capable of being 168 analyzed. 169 170 BSE and EDS images may also be processed through ImageJ to obtain crystal length 171 measurements without the addition of manual tracing or markings. Since BSE images are 172 grayscale, color threshold adjustments may be required to prevent grayscale overlap between the 173 mineral of interest and another with similar atomic weight. Unlike thin section images where 174 plagioclase twinning patterns in a cluster help discern discrete crystals for tracing, grayscale BSE 175 images frequently produce a single grayscale entity where crystal borders are not readily 176 apparent, particularly in the absence of zoning. Detecting crystal borders within clusters is also 177 problematic with EDS imaging if plagioclase composition is identical among contiguous 178 crystals. As crystal clusters are common in volcanic textures, a greater frequency of clusters will 179 artificially increase larger crystal size counts. Another less frequently used method, electron 180 backscatter diffraction, can detect discrete crystals by proximal offsets in crystal orientation but 181 can also produce an overinflated number of crystals within a crystal cluster if twinning is not 182 properly accounted for.

184 Plagioclase in CSD analysis

185 Plagioclase is a ubiquitous mineral phase in mafic lavas and serves as a sensitive fingerprint of

- 186 changes in melt conditions and in physical processes (e.g. magma mixing and crystal settling).
- 187 Because plagioclase often nucleates and grows over wide and fluctuating temperature and
- 188 pressure regimes during the eruptive process, polydisperse populations (multiple true sizes) and
- 189 multiple aspect ratios are common in volcanic products (Guilbaud et al., 2007; Neave et al.,
- 190 2013) and can reflect different cooling rates (Brugger and Hammer, 2010 and references therein;
- 191 Holness, 2014). Fast-cooling upon eruption often produces anhedral plagioclase microlites
- 192 (Brugger and Hammer, 2015) with swallowtail morphology and twinning styles that may point to
- 193 conditions of crystallization and growth histories (Xu et al., 2016). Multiple plagioclase habits in
- a single sample are often treated with stereological corrections in order to produce meaningful
- 195 CSDs, as true crystal lengths that represent actual 3D crystal volumes are not directly
- represented in 2D thin sections (Morgan and Jerram, 2006).
- 197

EBSD and automated mineralogy

199 Large-scale, high-resolution SEM-based EDS images can be efficiently acquired from automated

systems (i.e. automated mineralogy). The user defines the area on a polished sample to be

scanned at a chosen resolution. The final pixel-based, large-scale image comprises multiple

scanned fields that are automatically stitched together. Each pixel represents elemental

203 information that can be used to produce associated mineral images (Gottlieb, 2000). The mineral

images are then employed as crystal images from which lengths can be extracted. The user must

- first establish a reliable protocol for defining the mineral (either a stoichiometric formula or one
- based on an actual geochemical analysis) and once completed, the protocol can be reused for the

207	same phase from multiple samples (the protocol for defining plagioclase for our samples is
208	explained the methods section). The early use of automated SEM-based approaches focused on
209	mineral processing and ore identification in an attempt to optimize ore release from natural
210	samples (Sutherland, 2007; Gu, 2003). Today, these approaches have become increasingly
211	routine in mineralogical and petrological analyses (Hrstka et al., 2018). In this research, the
212	TIMA (Tescan Integrated Mineral Analyser) automated mineralogy system is employed to
213	produce images from which plagioclase crystal lengths are obtained. Automated mineralogy
214	produces plagioclase images based on elemental composition whereas EBSD produces
215	information based on crystallographic orientation.
216	
217	THE LAKI FISSURE ERUPTIONS OF 1783-1784
218	The eight-month long tholeiitic fissure eruptions in the Eastern Volcanic Zone of Iceland lasted
219	from June 8, 1783 to February 7, 1784 and produced \sim 15.1 km ³ of lava, covering 565 km ²
220	(Thordarson and Self, 1993). Ten separate eruptions coincided with the opening of one of ten
221	partially-overlapping, en-echelon fissures, produced as a result of spreading between the North
222	American and European plates (Thordarson and Self, 1993; Fig. 1). Earthquake swarms began in
223	May of 1783 as the fissure system propagated northeast toward Grímsvötn, followed by the first
224	eruptive episode in June. The ten discrete eruptive episodes were recorded based on preserved
225	tephra deposits, stratigraphy, and historical accounts, with each episode experiencing an initial
226	stage of phreatomagmatic explosivity caused by the high position of the water table. Eruptive
227	styles changed to sub-Plinian and then to Hawaiian activity as the water table lowered
228	(Thordarson and Self, 1993). The first five episodes (and hence the first five fissures) occurred
229	on the southwest side of Laki mountain and produced magma that discharged toward the south

230	within the Skaftá river gorge. The last five episodes occurred on the northeast side of Laki
231	mountain and were channeled southward within the Hverfisfljót river gorge. A detailed
232	description of the Laki eruption characteristics is provided by Thordarson and Self (1993).
233	
234	The geochemical characteristics are well-constrained across multiple studies for the Laki region
235	(Bindeman et al., 2006; Guildbaud et al., 2007; Passmore et al., 2012; Neave et al., 2013; Neave
236	et al., 2017). Passmore et al. (2012) concluded that crystal mush entrainment was greater on
237	average at later stages of the eruption, coinciding with the presence of anorthitic plagioclase
238	(Passmore et al., 2012; Neave et al., 2013). Neave et al. (2013) found evidence of concurrent
239	mixing and crystallization of different sources.
240	
241	SAMPLE CHARACTERISTICS
242	Two samples (L-4B and L-E) were collected along roadways F206 and Route 1 (Fig. 1),
243	representing micro-porphyritic basalt from both the first and second halves of the eight-month
244	long Laki eruption. L-4B is groundmass-dominant and proximal to its originating fissure,
245	produced during the first half (i.e. the first five eruptions). L-E is seriate and a distal-to-fissure
246	sample, produced during the second half. Both samples are dominated by plagioclase,
247	clinopyroxene, olivine and dendritic opaques. Dendritic titanomagnetite only occurs in the
248	groundmass while plagioclase, clinopyroxene and olivine occur as both phenocryst and
249	groundmass. Sample L-4B is volumetrically dominated by the finest groundmass and provides
250	the starkest contrast between phenocryst and groundmass crystal population sizes, appearing
251	strongly bimodal (Fig. 2). L-E contains the largest phenocrysts and the coarsest groundmass,
252	with a sub-seriate crystal population (Fig. 3). Because a central focus of this paper concerns how

253	groundmass-dominated and phenocryst-dominated textures shape CSD curves, L-4B and L-E are
254	highly suitable as they represent two end-members of volcanic texture. Based on initial optical
255	microscopy observations, L-4B contains discrete plagioclase phenocrysts up to ~ 0.70 mm, close
256	to that of L-E's maximum crystal length of ~ 0.80 mm. In both samples, the dominant shape of
257	discrete plagioclase phenocrysts is subhedral to euhedral. Plagioclase-only whole-clusters attain
258	maximum lengths of up to \sim 3.5 mm in L-E and \sim 2.0 mm in L-4B. For clusters with plagioclase
259	and clinopyroxene (with or without olivine), whole-cluster lengths were slightly smaller in L-4B.
260	Tables 1 and 2 summarize the major phenocryst occurrences for both samples.
261	
262	MATERIALS AND THIN SECTION PREPARATION
263	Two orthogonally-oriented thin sections were prepared from each of the two lava samples.
264	Group-A thin sections (L-4B and L-E) consisted of the original cut surface from their respective
265	hand sample while Group-B thin sections (V4 and V1) consisted of lengthwise orthogonal cuts
266	produced from the remaining billets of group A (Supplemental Fig. 1). If a foliated fabric exists,
267	then orthogonal cuts can assist in the detection of crystal preferred orientation when statistically
268	significant similarities (or differences) in CSDs are present (see "BSE imaging to detect
269	preferred orientation" in the methods section). Proximal orthogonal cuts (cuts obtained from
270	immediately adjacent portions of a sample) can also assist in detecting localized fabric variations
271	when analysis is performed along the same regions between the original and orthogonally
272	prepared thin section. L-E and L-4B were prepared by Wagner Petrographic, Utah and polished
273	to 0.25 μ m. L-E also incurred a final polish with 0.05 μ m colloidal silica for ~20 hours on a
274	Buehler Vibromet 2 vibratory polisher at 70% amplitude at the University of Wyoming's
275	Material Characterization Laboratory. Thin sections V1 and V4 were prepared by the Colorado

276 School of Mines' Thin Section Laboratory and polished with 0.05 µm alumina. All thin sections 277 were carbon coated using a Cressington 208 carbon coater to prevent charging during scans. 278 279 **METHODS** 280 Overview for determining crystal size distributions 281 Crystal size distribution measurements began with the acquisition of plagioclase crystal length 282 measurements from three general types of digital images: 1) photomicrographs, 2) BSE images, 283 and 3) two types of automated mineralogy images. Adobe Photoshop CC was used for manual 284 tracing where noted. All three image types were then imported into ImageJ open source software 285 and converted to 8-bit and grayscale thresholded for crystal length measurements. ImageJ 286 measurements were recorded in a spreadsheet and imported into CSDSlice (where indicated), a 287 program that determines statistical best-fit aspect ratios for a group of length measurements 288 (Morgan and Jerram, 2006). The five most statistically significant aspect ratios (the five greatest R² values) are returned in the form x: y: z, representing the short (S), intermediate (I), and long 289 290 (L) axes ratios. At least 75 crystal sections are required in order to determine a robust best-fit 291 aspect ratio for tabular crystals and at least 250 crystal sections for acicular ones (Morgan and 292 Jerram, 2006). CSDSlice determines aspect ratio from best-fit ellipse measurements and has been 293 previously used for plagioclase (Brugger and Hammer, 2010; Neave et al. 2013; 2017). Because 294 plagioclase can acquire multiple shapes reflecting unique undercoolings, larger-crystal 295 populations were stereologically addressed separately from smaller-crystal populations (Morgan 296 and Jerram, 2006). Crystals were analyzed as at least two distinct populations in CSDSlice, 297 separated by a size threshold of 150 µm as determined by previous research of Laki lavas 298 (Passmore et al., 2012; Neave et al, 2013).

299

300	There are multiple approaches for obtaining initial apparent length measurements from a 2D cut
301	section with the final goal that the measurements serve as the best proxy for actual 3D crystal
302	volumes. Most methods of defining linear 2D measurements produce similar values for equant
303	shapes but values begin to diverge with decreased symmetry (Higgins, 2006). The long axis of a
304	best-fit ellipse serves as a strong proxy for actual size, L , (Higgins, 2006) assuming a random
305	fabric and non-spherical shapes. Plagioclase length measurements from ImageJ were recorded in
306	an Excel spreadsheet along with aspect ratios from CSDSlice. Both sets of data were input into
307	CSDCorrections (Higgins, 2000, 2006). CSDs are partly determined based on bin widths that can
308	be adjusted from two to ten bins per decade (i.e. per log unit, or factor of 10) in CSDCorrections.
309	Here, we use a minimum of five bins per decade (unless stated otherwise) to reduce uncertainty
310	attributed to either using an increased number of smaller bins or to having an insufficient sample
311	population.

312

313 Using orthogonal BSE images to detect preferred orientation

314 For thin sections L-4B and its orthogonal equivalent V4, both groundmass-dominated, a total of 315 three proximal BSE-image pairs (Supplemental Figs. 2, 3, and 4) were acquired at the Colorado 316 School of Mines using a TESCAN MIRA3 LMH Schottky field emission-scanning electron 317 microscope (FE-SEM) equipped with a single-crystal YAG BSE detector and a Bruker XFlash 318 6/30 silicon drift detector. Scan conditions included an accelerating voltage of 15 ky, a beam intensity of 11, and a working distance of 10 mm. The BSE images were ~300 µm x 250 µm and 319 320 only plagioclase crystal lengths $\leq 150 \ \mu m$ and $\geq 1 \ \mu m$ were considered for CSD plots. The BSE 321 images were used to perform a relative-fabric analysis. This fabric test consisted of comparing

CSDs between three BSE images from L-4B and three similarly located BSE images from V4
(Supplemental Fig. 2). Orthogonal cut sections are frequently used as a fabric test (Meurer and
Boudreau, 1998; Launeau et al. 2005); therefore, if the general fabric is similar across L-4B, cut
sections through crystals from the two orthogonal sets, regardless of crystal contiguity, should
theoretically produce similar CSDs.

327

328 Vesicle borders were avoided to minimize crystal preferred orientation observed on some vesicle 329 walls. This groundmass fabric test involved several assumptions regarding eruptive processes on 330 the scale of grayscale BSE images: late-stage groundmass crystallization occurred as a single 331 pulse; images reflect crystals of similar aspect ratios and corresponding size populations; and 332 crystal contiguity patterns are similar across images if fabric is truly random. To maintain 333 consistency between image-derived length measurements in ImageJ, thresholding reflected a 334 compromise where maximum values preserved plagioclase boundaries (excessive threshold 335 values created artificially large plagioclase particles), but reduced fractures and speckling caused 336 by similar grayscaling of clinopyroxene cores. The maximum upper threshold value was 337 determined visually from ImageJ threshold peaks, at the point where the right tail (upper portion 338 of the threshold curve) for the plagioclase peak displays the largest change in slope. Only 339 particles with major axes $\leq 150 \text{ }\mu\text{m}$ but $\geq 1 \mu\text{m}$ were considered. Results for both edge-particle 340 exclusion and inclusion were examined. The plagioclase groundmass aspect ratio was set to 1:4:8 341 (prismatic) and 1:8:8 (tabular) in CSDCorrections, consistent with the minimum length-to-width 342 ratio of >4 reported by Neave et al. (2017). BSE images show that discrete groundmass 343 plagioclase crystals are often contiguous, producing a singly complex, large connected particle 344 that is not acknowledged by ImageJ.

345

346 Electron backscatter diffraction (EBSD) imaging

347 Orientation analysis for a single glomerocryst and surrounding groundmass in sample L-E was 348 completed on a FEI QUANTA FEG 450 field emission scanning electron microscope equipped with an Oxford Instruments X-Max 80 mm² EBSD detector and a Centaurus BSE detector at the 349 University of Wyoming's Material Characterization Laboratory. The following scan conditions 350 351 were used: a sample tilt angle of 70 degrees, an accelerating voltage of 20 kV, a spot size of 5 352 μm, a step size of 2.5 μm and a working distance of 30 mm. Oxford Instruments HKL Channel 5 353 software was used for both acquisition and noise reduction. Initial indexing occurred at a Hough 354 transform resolution of 60 with subsequent re-indexings of 70 and 55. Noise reduction was performed after the three re-indexings, following Prior et al. (1999). A mean angular deviation 355 (MAD) of $\geq 1^{\circ}$ was used to define grain boundaries. A freely available MATLAB toolbox called 356 357 MTEX (version 4.5.1; Mainprice et al., 2015) was used to process the final stitched-and-re-

358 indexed file. The toolbox provides a quantitative fabric descriptor called an M-index, thoroughly

discussed in Skemer et al. (2005). An M-index is based on the distribution of misorientation

angles and requires ~150 orientation measurements to produce a meaningful result, on a scale of

361 0 to 1, where 0 indicates no preferred orientation and 1 indicates a strong preferred orientation.

362 MTEX was used to produce orientation data and discrete-crystal boundary maps from Channel 5

363 files, accounting for the 12 plagioclase twin laws as described by Xu et al. (2016).

364

365 Automated mineralogy

366 Automated mineralogy analysis was performed at the Colorado School of Mines Mineral and

367 Materials Characterization Facility using a TESCAN-VEGA 3 Model LMU VP-SEM with four

368	PulseTor 30 mm ² EDS detectors, a YAG scintillator BSE detector, and TIMA software version
369	1.5.26. Analysis was initiated using the control program TIMA3. Scan conditions included an
370	accelerating voltage of 25 keV and a beam intensity of 14. TIMA phase maps of plagioclase
371	were initially grouped by anorthite content: $An_0 - An_{50}$, $An_{50} - An_{64}$, $An_{64} - An_{89}$, and $An_{89} - An_{64}$, $An_{64} - An_{89}$, and $An_{89} - An_{89}$,
372	An ₁₀₀ , following the Passmore et al. (2012) definition of a plagioclase groundmass minimum of
373	An_{51} and a maximum of An_{64} and plagioclase phenocryst cores up to An_{89} . Our anorthite
374	contents agree with the above reported values as well as with those reported in Guilbaud et al.
375	(2007), with primitive plagioclase cores $>An_{70}$ and groundmass similar to phenocryst rims of
376	An ₄₉₋₇₀ (lava, not tephra). Neave et al. (2017) also utilize An ₆₄ as a separator to distinguish
377	between groundmass and phenocryst of Laki basalts. All our samples show less than 40%
378	vesicles (L-4B \sim 24% and L-E \sim 16%), as determined by ImageJ thresholding.
270	

379

380 Plagioclase was specifically defined for the Laki samples for automated mineralogy analysis by first establishing BSE brightness values from point analysis of plagioclase in the thin sections. 381 382 Brightness values were determined to range between 19.8 to 22.5% using the TIMA software. 383 Using Bright Phase Search mode, only particles and grains within the above mentioned brightness range were analyzed and an EDS spectrum for each pixel was acquired (1000 X-ray 384 385 counts per point analysis at a spatial resolution of 2 μ m). The EDS spectra are compared against 386 a lookup table allowing a plagioclase composition assignment to be made at each acquisition 387 point. Results are output by the TIMA software as a spreadsheet giving the area percent of each 388 composition in the look-up table as a compositional map. Definitions were created for the degree 389 of anorthite content shown in the groups listed above so that spectra produced images reflecting 390 the grouped anorthite values. Spectra acquisition occurs over multiple smaller fields and TIMA

software automatically stitches the fields together to produce the final larger image. The result is
a digital image of plagioclase crystals superimposed onto a corresponding BSE image. The falsecolor image is referred to here as a panoramic, or a panoramic image. Scan times were ~6 hours
for L-4B and ~17 hours for L-E.

395

396 Two types of automated mineralogy plagioclase images were used to obtain crystal length 397 measurements: 1) "panoramic" false-color images (Supplemental Figs. 6 and 7) and 2) "isolated-398 particle" images where plagioclase phenocrysts and crystal clusters are automatically digitally 399 isolated from the original false-color image (i.e. from panoramic images). In the case of isolated-400 particles images, each coherent particle can be further reduced in size by digital clipping, or 401 segmenting (Supplemental Fig. 5). For both types of images, phenocrysts that border image 402 edges appear linearly truncated and were manually deleted. Particles that suggested fracturing 403 and possible loss of area were included in size counts only when at least ~80% of the perceived 404 original size was present. Particles were first ranked by size using TIMA software. Because 405 TIMA calculates size using the diameter of an equal area circle, phenocrysts suitable for length 406 measurements from both TIMA panoramas and isolated-particle images were determined by 407 visual inspection such that the particle rendered an equivalent ~150 µm maximum length (the 408 greatest distance between the two farthest points on a particle outline). The diameters of equal-409 area circles were $\sim 80 \ \mu m$ for L-4B and $\sim 90 \ \mu m$ for L-E. Long axes of best-fit ellipses were then 410 calculated by ImageJ. Phenocrysts in cross-polarized light (XPL) photomicrograph equivalents 411 of TIMA panoramas were traced, and the long axes of best-fit ellipses were determined with 412 ImageJ.

414

RESULTS

415 Orthogonal cuts and BSE fabric assessment

416 Figures 4 through 6 summarize our findings. L-4B sampled areas show strong similarities in

417 CSD curvature at *L* values $< \sim 25 \mu m$ and $< \sim 15 \mu m$ for both E (edge-bordering) and NE (non

418 edge-bordering) types of analyses at aspect ratios of 1:4:8 and 1:8:8, respectively (Fig. 4),

419 suggesting that crystal size distributions are similar among the three spatially separated regions

420 within sample L-4B. Edge-bordering analyses produce larger *L* values likely due to the effects of

421 increased contiguity (and not smaller *L* values due to crystal truncation). Divergence of CSDs

422 occur toward the larger *L* values as smaller particles are likely contributing to the contiguity

423 affect and are therefore not counted in smaller-*L* bins. Sampled regions within V4 display similar

424 CSDs but divergence occurs much earlier at $\sim L=10 \ \mu m$ for 1:4:8 and $\sim L=5 \ \mu m$ for 1:8:8.

425

426 The BSE image for spot V4 1 (Supplemental Fig. 4) initially suggests a coarser population but 427 the average size, C, is 3.37 µm. C values for spot V4 2 and spot V4 3 are 3.43 and 3.36 µm, 428 respectively, indicating $\sim 2\%$ maximum difference. Despite the potential contiguity artifacts of 429 thresholding BSE images in ImageJ, CSD curves are remarkably similar in shape for a given 430 aspect ratio, suggesting not only consistency in fabric between L-4B and orthogonal V4, but 431 since the two sections are orthogonal, minimal preferred fabric. The inclusion of edge-particles 432 should theoretically create smaller truncated particles that increase population counts for the 433 smaller L-bins into which those truncated particles fall. However, this behavior is not observed 434 consistently, particularly in Figure 4 where E-curves lie both above and below NE-curves and 435 may be an effect of a large crystal sample size. Although growth rate and residence time were 436 not of concern for this analysis, the effects of particle-shape choice on kinetic information is

437	apparent. Figures 5 and 6 show the results of E and NE-style analyses. Figure 5 suggests that
438	variations in CSD curves are more sensitive to the value of aspect ratio (red lines) than to edge
439	effects (black lines), and that nucleation densities approach similar values for a single aspect
440	ratio. Figure 6 shows that combining the six sampled groundmass regions from L-4B and V4
441	produces a single CSD curve that suggests a common pattern of an increasingly fast-cooling lava
442	where groundmass nucleation rates increase over time, also reflected in the acicularity of
443	groundmass crystals (Shea and Hammer, 2013).
444	
445	CSDs derived from automated mineralogy (TIMA) and manually traced images:
446	Phenocrysts ($L \ge 150 \ \mu m$)
447	Scans of plagioclase from L-4B (7% plagioclase phenocrysts) and L-E (10% plagioclase
448	phenocrysts) were initially acquired over 133.406 and 170.208 mm ² (Table 3) and subsequently
449	cropped for ImageJ analysis, resulting in 92.57 mm^2 (L-4B, 8901 x 2600 pixels) and 163.94 mm^2
449 450	cropped for ImageJ analysis, resulting in 92.57 mm ² (L-4B, 8901 x 2600 pixels) and 163.94 mm ² (L-E, 3600 x 11387 pixels). Full thin section scans were not performed as acquisition times for
449 450 451	cropped for ImageJ analysis, resulting in 92.57 mm ² (L-4B, 8901 x 2600 pixels) and 163.94 mm ² (L-E, 3600 x 11387 pixels). Full thin section scans were not performed as acquisition times for L-4B and L-E were already 6+ hours and 17+ hours at a spatial resolution of 2 μ m, respectively.
449 450 451 452	cropped for ImageJ analysis, resulting in 92.57 mm ² (L-4B, 8901 x 2600 pixels) and 163.94 mm ² (L-E, 3600 x 11387 pixels). Full thin section scans were not performed as acquisition times for L-4B and L-E were already 6+ hours and 17+ hours at a spatial resolution of 2 μ m, respectively. Zero-plagioclase pixels occurred in some of the largest phenocrysts and rarely in groundmass
449 450 451 452 453	cropped for ImageJ analysis, resulting in 92.57 mm ² (L-4B, 8901 x 2600 pixels) and 163.94 mm ² (L-E, 3600 x 11387 pixels). Full thin section scans were not performed as acquisition times for L-4B and L-E were already 6+ hours and 17+ hours at a spatial resolution of 2 μ m, respectively. Zero-plagioclase pixels occurred in some of the largest phenocrysts and rarely in groundmass crystals. L-4B displayed three major occurrences of regions of non-plagioclase pixels, and this
449 450 451 452 453 454	cropped for ImageJ analysis, resulting in 92.57 mm ² (L-4B, 8901 x 2600 pixels) and 163.94 mm ² (L-E, 3600 x 11387 pixels). Full thin section scans were not performed as acquisition times for L-4B and L-E were already 6+ hours and 17+ hours at a spatial resolution of 2 μ m, respectively. Zero-plagioclase pixels occurred in some of the largest phenocrysts and rarely in groundmass crystals. L-4B displayed three major occurrences of regions of non-plagioclase pixels, and this issue was addressed before image processing with ImageJ by manually assigning the missing
449 450 451 452 453 454	cropped for ImageJ analysis, resulting in 92.57 mm ² (L-4B, 8901 x 2600 pixels) and 163.94 mm ² (L-E, 3600 x 11387 pixels). Full thin section scans were not performed as acquisition times for L-4B and L-E were already 6+ hours and 17+ hours at a spatial resolution of 2 µm, respectively. Zero-plagioclase pixels occurred in some of the largest phenocrysts and rarely in groundmass crystals. L-4B displayed three major occurrences of regions of non-plagioclase pixels, and this issue was addressed before image processing with ImageJ by manually assigning the missing pixels the same greyscale color as the plagioclase present (Supplemental Fig. 6). L-E was highly
449 450 451 452 453 454 455 456	cropped for ImageJ analysis, resulting in 92.57 mm ² (L-4B, 8901 x 2600 pixels) and 163.94 mm ² (L-E, 3600 x 11387 pixels). Full thin section scans were not performed as acquisition times for L-4B and L-E were already 6+ hours and 17+ hours at a spatial resolution of 2 µm, respectively. Zero-plagioclase pixels occurred in some of the largest phenocrysts and rarely in groundmass crystals. L-4B displayed three major occurrences of regions of non-plagioclase pixels, and this issue was addressed before image processing with ImageJ by manually assigning the missing pixels the same greyscale color as the plagioclase present (Supplemental Fig. 6). L-E was highly porphyritic and contained up to 50 variably affected phenocrysts that were addressed in a similar

CSDSlice determined best-fit aspect ratios of 1.0: 3.0: 6.0 ($R^2 = 0.6353$) and 1.0: 2.5: 5.5 ($R^2 = 0.8486$) for L-4B phenocrysts using isolated-particle and panoramic images, respectively. The isolated-particle image provided 67 phenocrysts (fewer than the 75 required for robust aspect ratios) while the panorama image provided 422 phenocryst length measurements. Further removal of smaller-size populations of phenocrysts in an attempt to improve the correlation strength of an aspect ratio had the reverse effect, as R^2 values were reduced.

465

466 L-E aspect ratios for isolated-particle and panorama images were 1.0: 2.1: 5.5 ($R^2 = 0.8153$) and

467 1.0: 2.5: 5.0 ($R^2 = 0.8156$), respectively. Because L-E is texturally seriate, the populations for

468 both isolated-particle (732 phenocrysts) and panorama (3211 phenocrysts) images were

469 examined for the largest 50% and 25% size subpopulations to determine if there was an

470 improvement in a best-fit shape. R^2 values increased slightly to 0.8206 and 0.8203 for the largest

471 50% and 25% size sub-populations for the panorama and decreased slightly for isolated-particle

472 images, to 0.8153 and 0.8110 for the same percentiles. All adjustments to phenocryst populations

473 as described above resulted in negligible changes to aspect ratios.

474

Photomicrograph phenocryst tracings for L-4B and L-E were performed over similar areas compared to automated mineralogy scans (minimum TIMA plagioclase measurements based on a diameter of an equal-area circle were ~45 μ m for L-E and ~70 μ m for L-4B). Tracings were processed with ImageJ and converted to dimensions of best-fit ellipses. For texturally bimodal L-4B, 291 distinct phenocrysts were traced, and where glomerocrysts existed, individual plagioclase crystals were traced to prevent artifact coarse-size skewing. CSDSlice determined a best-fit aspect ratio of 1.0: 3.6: 7.0 for L-4B with R² = 0.8897. For L-E and its strongly seriate 482 texture, multiple aspect ratios were determined for phenocryst sub-populations. All tracings 483 resulting in long-axes measurements of $L \ge ~ 100 \mu m$ were first analyzed as a single group (1491 484 crystals), resulting in a best-fit aspect ratio of 1.0: 3.3: 8.0 with R² = 0.8092. The largest 75% and 485 50% long-axes sub-populations produced aspect ratios of 1.0: 3.6: 7.0 (R² = 0.8360) and 1.0: 5.0: 486 9.0 (R² = 0.8552), respectively.

487

Figure 7 summarizes crystal size distributions comparing isolated-particle, panorama, and XPL tracings; resulting kinetic characteristics appear in Table 4. Three aspect ratios were used as determined by each method. Another set of CSDs were produced using crystal lengths from each of the three methods but with the aspect ratio determined from XPL tracing only ("new aspect ratio" in Figs. 7A and 7B).

493

494 Discontinuities in CSD curves occurred at the largest L-bins due to an insufficient sample size 495 within those bins. For L-4B (Fig. 7) photomicrograph tracings provided the most consistent and 496 continuous data for all size populations \geq 150 µm. Isolated-particle images did not provide 497 adequate data points at the coarsest sizes, presumably due to fractured phenocrysts that TIMA 498 post-processing interpreted as multiple smaller particles. Panorama images provided similar 499 small-L bin behavior but, like isolated-particle images, caused CSD discontinuities at the 500 coarsest bins due to phenocryst fracturing. However, the downturn at the finest fractions is 501 preserved by all methods, and so downturns suggest that more sampling is needed below the 150 502 um threshold. The use of the photomicrograph-derived aspect ratio with isolated-particle and 503 panorama crystal lengths caused a slight shift of the CSDs to lower L-values. Depending on which portion of the curve a regression line is back-extrapolated from to estimate a nucleation 504

population density, this curve shift may have the effect of slightly reducing the nucleationdensity but by less than an order-of-magnitude.

508	L-E CSD curve continuity was maintained due to the large number of measurements. The
509	downturn over small L-values for CSDs from isolated-particle images was likely an artifact of
510	equating the TIMA-defined size of $\sim 80 \ \mu m$ to a 150 μm longest-length measurement. Panorama
511	images provided a similar shape profile to that created from XPL tracing, but the largest particle
512	measurements reflect inflated values due to particle contiguity within plagioclase-dominant
513	glomerocrysts. The panorama-derived curve is smooth compared to the XPL-derived curve and
514	suggests that the former method may have produced an artificially greater number of larger
515	particles, thereby detecting more particles than manual tracing provided, although to what extent
516	artifact crystal counts were produced is uncertain. As with L-4B, minor horizontal shifts in CSDs
517	occurred when the XPL-derived aspect ratio was used.
518	
519	CSDs derived from automated mineralogy (TIMA) images: Groundmass ($L < 150 \ \mu m$)
520	Length measurements from manual phenocryst tracings from L-E photomicrographs were
521	combined with groundmass measurements from TIMA panoramic images (Supplemental Fig. 7,
522	Fig. 8). L-4B was not considered due to an insufficient phenocryst population count. We
523	combined 733 groundmass measurements derived from XPL tracings with 64795 TIMA
524	panoramic groundmass measurements. CSDSlice determined a best-fit aspect ratio of 1:0: 2.5:
525	4.5, 1: 2.2: 3.2, and 1.2: 2.0: 3.2 for the first 4000, second 4000 and third 4000 largest
526	measurements, respectively. All R^2 were > 0.80 and provide agreement with actual crystal shape

528	CSD corrections can only process 20001 entries at a time, 19268 groundmass measurements
529	were used, providing a minimum major axis = $14.38 \ \mu$ m. Results from combining XPL-derived
530	phenocrysts and TIMA-derived groundmass length measurements are shown in Figure 8. The
531	increase in slope from coarser to finer size populations suggests a change in nucleation and
532	crystal growth environments, roughly correlating to three major stages, labeled A, B, and C.
533	
534	An initial inspection of the microlite population in thresholded images suggests that when "fill
535	holes" are included for image analysis in ImageJ, the effects of truncating microlite borders are
536	minimized, thus reducing bias in panoramic measurements of microlites (as opposed to
537	phenocrysts). Figure 8 produces a $\ln(n^0)$ value (y-intercept) of 10.96 mm ⁻⁴ when based on a
538	regression slope of -14.1. This value is significantly larger than those indicated by the other
539	methods in Table 4, suggesting that high-resolution TIMA images may potentially provide more
540	robust upper boundaries of maximum nucleation population densities, if not more accurate
541	nucleation densities than manual-phenocryst-tracing-plus-back-extrapolation would permit.
542	
543	EBSD detection of fabric and discrete crystals in a complex cluster
544	Complex plagioclase twinning, especially as viewed in photomicrographs, can obscure visual
545	detection of discrete-crystal boundaries within clusters. As such, twinning presents challenges to
546	obtaining accurate crystal lengths with manual methods. To assess possible twinning-related
547	issues with discrete crystal detection, we compared crystal counts from a single plagioclase-only
548	cluster and surrounding groundmass from sample L-E using four types of images: 1)
549	photomicrograph, 2) BSE, 3) TIMA-derived phase image, and 4) EBSD-derived orientation map
550	(Fig. 9). Only crystals that were components of the all-plagioclase cluster were measured, and

551 the surrounding groundmass ignored. BSE and TIMA phase images (Figs. 9B and 9C) only 552 produce a single, contiguous particle although the cluster morphology suggests multiple crystals 553 are present. EBSD and our MTEX script (Supplemental File 1) detected 51 discrete plagioclase 554 crystals using a major axis length of an equal-area ellipse > 150 μ m, but only ~40 crystals could 555 be visually identified in the cluster image (Fig. 9D) whereas only 27 could be manually detected from the photomicrograph (Fig. 9A). Our MTEX script more frequently defined and detected 556 557 individual crystals than manual methods. This difference becomes significant with cluster-rich 558 samples, as an average of three unidentified discrete phenocrysts across multiple clusters within 559 a sample will variably affect CSDs, provided the script accurately defines intra-crystal twinning 560 patterns.

561

In addition to crystal lengths, EBSD orientation maps yield information on preferred orientations 562 563 of plagioclase phenocrysts and groundmass populations as well as twin types. Our script 564 determined the following twin types (Fig. 9D): 29% albite, 12% Carlsbad, 17% albite-Carlsbad, 565 1.3% pericline and <1% other. The script also produced a qualitative fabric analysis using EBSD 566 M-indices; a groundmass M-index of 0.0150 and a phenocryst M-index of 0.0891 suggests mild 567 orientation for the phenocryst population and less preferred orientation for the groundmass 568 population, so neither fabric is completely random. M-indices suggest agreement with 569 assumptions of random microlite orientation for CSD analysis using CSDSlice and 570 CSDCorrections. The groundmass M-index here, however, only represents a local occurrence on 571 a thin-section scale, and caution should be taken in assuming any large-scale effects. In the case 572 of the cluster from sample L-E, vesicle areas were purposely avoided because plagioclase 573 microlite alignment was noticed along vesicle walls. Increased vesicle presence may correlate to

574 localized plagioclase alignment and so highly vesiculated samples may require a more thorough575 orientation analysis.

576

577

DISCUSSION

578 Texture and image type can create differences in apparent crystal lengths. These differences were 579 evident in the plagioclase $L \ge 150 \,\mu\text{m}$ population where manual tracing could isolate discrete 580 crystals regardless of fracturing and clustering effects, but automated SEM-based methods could 581 only detect discrete crystals based on immediately surrounding gaps of non-plagioclase 582 compositions. Although BSE images frequently serve as a base image from which crystal lengths 583 are manually marked, this is only feasible when crystal contiguity is minimal, and so cluster-free 584 textures would produce appropriate working BSE images. Manual methods, however time-585 consuming, still provide the most accurate assessment of crystal length regardless of texture. 586 Given that plagioclase is commonly twinned and zoned in magmatic samples, high resolution photomicrographs reflect optical properties that indicate demarcation boundaries between 587 588 plagioclase crystals. These images can therefore more easily assist in visual detection of discrete 589 crystals.

590

591 In assessing the feasibility of automated mineralogy imaging for extracting crystal lengths,

592 TIMA panoramic images (based on the opposing textures of bimodal L-4B and seriate L-E)

593 created upward shifts in CSD curves compared to manual tracing methods. This does not

necessarily imply that thresholding-and-length-determination in ImageJ with panoramic images

is an entirely inferior method to manual tracing in photomicrographs; on the contrary, although

results show a systematic CSD curve shift, TIMA images may serve to mark upper boundaries of

597	nucleation densities (Fig. 7). There are also human operator issues to consider, such as
598	confidence in the user actually having isolated all crystals $L \ge 150 \ \mu m$ in any given sample.
599	Quality control issues likely vary across research, and this is why automated methods have the
600	potential to serve as an additional quality control check on more traditional manual approaches.
601	Does the use of a digital stylus, mouse, or trackball present bias in obtaining accurate crystal
602	outlines due to limitations on the movement resolution (dots-per-inch, or DPI) of each device?
603	There is no consistency across research other than basic methodological approaches (e.g.
604	threshold an image, outline, process in ImageJ, extract lengths), and often methodological
605	assumptions must be made by the reader since exhaustive details are typically not provided.
606	
607	We noted fundamental differences in two types of automated imaging approaches, EDS and
608	EBSD. While automated mineralogy focuses on elemental mapping, EBSD focuses on crystal
609	orientation that involves addressing zero-data pixels with a noise-reduction process. The later
610	approach addresses the problem of length acquisition from grainy textures and missing pixels
611	(common in our plagioclase EDS maps) by emphasizing crystal orientation and zero-pixel
612	infilling. Therefore, from an EBSD image, one determines both fabric and potentially length
613	from completely pixeled crystals. Although it was beyond the scope of this study to focus on
614	EBSD images for crystal length measurements, we find this type of image acquisition to be
615	superior to others in terms of providing both fabric information and crystal length. We noted that
616	in both samples, phenocrysts were variably fractured, sieved, and oriented and so the TIMA
617	software would have provided inconsistent measurements regardless of its ability to calculate
618	length based on a diameter of an equal-area circle. ImageJ could not correctly identify discrete

619 phenocrysts for each sample using a single filling-in protocol with thresholded EDS images,620 although ImageJ's use of bounding ellipses circumvented the effects of missing pixels.

621

622 Manual tracing provided the only successful method for reliably identifying discrete plagioclase 623 crystals. In terms of producing CSDs that reflect either crystals isolated from clusters versus 624 clusters still intact, two textural factors provided insight: 1) discontiguity and 2) post-adhesion 625 zoning patterns. In most clusters, either detectable discontiguity was present and/or a 626 predominant non-shared crystal surface existed (Fig. 2B, for example). In these cases, length 627 measurements from isolated discrete crystals should produce accurate CSDs. However, the 628 cluster in Figure 9 suggests post-adhesion zoning, possibly due to synneusis. The lower half of 629 Figure 9A (photomicrograph) shows a longer northwest aligned plagioclase crystal. However, 630 the same area in Figure 9D (EBSD) shows a different outline pattern of the same crystal. In these 631 cases, combining the EBSD orientation-based crystal outline with additional zoning patterns 632 indicates that the lower half of this cluster experienced post-adhesion crystal growth. If this type 633 of cluster were dominant, CSDs determined from isolated crystals would reflect a different 634 growth rate, as length measurements would reflect growth on a restricted portion of the crystal 635 surfaces. Cluster analysis that combines EBSD images and photomicrographs (or BSE images 636 properly thresholded) has the potential to identify cluster styles which may reflect CSDs with 637 more than one growth rate.

638

As fabric has an obvious effect on apparent crystal lengths, a quantitative approach to fabric

640 assessment should exist for all CSD analyses. When EBSD analysis is cost prohibitive,

641 orthogonal cut sections (preferably three) should serve as a minimum requirement. Although

642 obtaining accurate CSDs was not the goal of the orthogonal cut analysis, comparing CSD 643 curvature and curve placement for fabric detection was: if contiguity, clustering and other 644 texturally controlled effects were present to the same extent in both sections, the sections should 645 theoretically produce similar CSDs. Within each cut section (L-4B and V4) the three sampled 646 groundmass regions are virtually identical for L-4B (Fig, 4A and 4C) but diverge slightly for V4 647 (Fig 4B and 4D) at $L > -10 \,\mu\text{m}$, presumably due to insufficient crystal counts. Direct comparison 648 of the two orthogonal sections against each other (Fig. 5C; the three sampled regions within each 649 cut-section are treated as single area) suggests that cut section L-4B has a slightly greater 650 population density but a narrower size range than V4. The increased size range of V4 may be due 651 in part to increased contiguity, which has the effect of depressing the population densities of 652 smaller size crystals, but if contiguity is assumed similar between cut sections, then variations in 653 CSDs are real despite the proximity of sampled areas. Furthermore, we avoided regions with vesicles for both EBSD and BSE orthogonal cut section analyses given plagioclase preferred 654 orientation was noted along some vesicle walls. Highly vesiculated samples may exert an 655 656 orientation bias that skews aspect ratio and length determination.

657

A significant contribution to CSD analysis from our work rests on high-resolution automated SEM-based approaches, both EDS and EBSD. In the case of groundmass plagioclase (L <150 μ m), a high-resolution 2 μ m SEM scan permits refinement of the groundmass size population into multiple groups, each with its own aspect ratio, for analysis of late-stage eruptive behavior. The above approach produced an asymptotic-like CSD curve for L-E as the groundmass size population was continuously refined (Fig. 8).

665	Strongly bimodal L-4B displayed a sharper increase in CSD slope at $L = \sim 1.5$ mm versus a more
666	continuous curve for highly seriate L-E (Fig. 7). Although a sudden slope change is expected in
667	highly bimodal samples, greater negative slopes at $L < 150 \ \mu m$ for L-4B suggest a relatively
668	faster late-stage eruption versus that suggested by L-E. Coupled with the on-vent location of
669	bimodal L-4B and its occurrence during the first half of the Laki eruptions, the relative lack of
670	phenocrysts does not provide a robust account of continuous phenocryst nucleation-and-growth
671	suggested by late-stage L-E. Relatedly, if phenocrysts from L-4B share nucleation-and-growth
672	origins with phenocrysts from L-E, it is not clear along which discrete portions of a continuous
673	nucleation-and-growth CSD curve these phenocrysts originated or are significantly related to.
674	
675	Although regions A, B, and C in Figure 8 represent crystal populations large enough to produce a
676	robust CSD, each region is representative of unique textural challenges. Region A considers
677	plagioclase length measurements that Castro et al. (2003) consider problematic due to cut-section
678	lengths smaller than the standard thickness of the thin section (30 μ m) while region B represents
679	groundmass size populations calculated from plagioclase length measurements approximately
680	greater than the thickness of the thin section. Contiguity and fracturing effects are directly
681	correctable through manual tracing for region C crystals and progressively more difficult for
682	crystals within region B and A. Aspect ratio evolution along a CSD curve for a seriate texture
683	should consider multiple size populations and therefore potentially multiple aspect ratios. Aspect
684	ratio evolution for seriate L-E through all three regions (Fig. 8) reflected increasingly compact
685	and less faceted forms with decreasing size populations. Within region C, aspect ratios showed
686	variations in intermediate and long axes lengths depending on what portion of the largest size

687 phenocryst populations were considered. Figure 5 suggests that such variations in aspect ratios688 have the potential to produce different CSDs.

689

EBSD data processed with the MTEXT toolbox detected 1345 discrete plagioclase crystals in the

area shown in Figure 9D. With a TIMA-based image, over 6000 particles were detected, and this

result may have been due to a combination of fracturing and a slightly finer scan resolution.

693 Noise correction in ImageJ using the "despeckle" function four times eventually produced ~1390

- 694 particles over a similar area but also introduced increased particle contiguity.
- 695
- 696 The effects of cut sections through swallowtail groundmass populations were not examined.
- 697 Swallowtail cut sections should theoretically contribute to the smaller groundmass size

698 populations, but the count may be offset by the fact that swallowtail termination cut-sections are

- 699 smaller than the thickness of the thin-section (the intersection-probability effect). Although
- approaches have been devised that model random cuts through simple solids (Morgan and

Jerram, 2006), more complicated forms have not been similarly analyzed. 3D numeric modeling

702 of random cuts through dendritic shapes is required.

703

704

IMPLICATIONS

Our observations suggest that internal consistency only holds when all samples are texturally similar so that a single method does not negatively exploit any texture-based effects on obtaining crystal lengths. Preserving internal consistency does permit reliable intra-study comparisons between samples, but internal consistency does not translate to consistency across research groups. The end goal is that CSD analyses across research groups should reflect consistent and

710	reproduceable results. Even the assumption of a random fabric by only a visual estimation is
711	inadequate, and here we demonstrate that the use of orthogonal BSE images may be sufficient in
712	lieu of costlier EBSD analysis. Provided that our MTEX script correctly adjusted for intra-cluster
713	twinning, we found that local variations in fabric likely occur and that clusters may contain a
714	greater number of discrete crystals than even visual estimations from photomicrographs permit.
715	A coarser scan resolution addressing discrete crystal occurrence in multiple clusters would have
716	been more appropriate and a direction for future work.
717	
718	Manual approaches for obtaining phenocryst lengths remain more reliable than automated
719	methods, and a fully automated approach is not currently feasible. However, high-resolution
720	automated SEM-based approaches in general do offer the opportunity to investigate late-stage
721	eruptive behavior through groundmass analysis, although anhedral forms and their corresponding
722	aspect ratios require refinement through voxel modeling (i.e. swallowtail forms). Automated
723	mineralogy may provide cross-research consistency in results for groundmass analyses,
724	highlighting manual-based bias (again, if textural similarities hold). Table 4 suggests that
725	automated mineralogy images may produce results similar to manual tracing when more seriate
726	textures are considered.
727	
728	Although plagioclase growth rates of $\sim 10^{-10}$ mm s ⁻¹ are typical (Cashman, 1990) and often used
729	to calculate residence times from CSDs (Brugger and Hammer, 2010 and references therein),
730	growth rates as high as 10 ⁻⁶ mm s ⁻¹ for microlite growth during decompression have been

reported (Hammer et al., 1999). Actual growth rates should not only vary immediately pre-, syn-,

and post-eruption, but they should vary during phenocryst formation as well. Therefore, CSDs

733	should be considered in the context of multiple growth rates and aspect ratios. However, we have
734	never observed the application of multiple growth rates for interpreting a single CSD curve that
735	would reflect real-world, evolving crystallization environments.
736	
737	ACKNOWLEDGEMENTS
738	The authors are very grateful to Marian Holness of the University of Cambridge's Department of
739	Earth Sciences as well as to an anonymous reviewer for exceptionally critical and thoughtful
740	feedback that led to a greatly improved final manuscript. We also thank Wendy Harrison from
741	the Colorado School of Mines for editing suggestions on the original draft of this manuscript;
742	Kevin Mahan's group in Geological Sciences at the University of Colorado at Boulder for
743	remote use of their EBSD software; and Tyler C. Brown at the University of Wyoming's
744	Materials Characterization Laboratory for his assistance with EBSD analysis, sample
745	preparation, and Oxford Channel 5 software training.
746	
747	Endnote:
748	This publication uses data collected within the framework of the following: Cone, K.A. (2018)
749	Refining crystal size distributions and kinetic histories using automated scanning electron
750	microscopy and manual methods: A hybrid approach, 91 p. M.S. thesis, Colorado School of
751	Mines, Golden.
752	
753	
754	
755	

756	REFERENCES
757	Bindeman, I., Sigmarsson, O., and Eiler, J. (2006) Time constraints on the origin of large
758	volume basalts derived from O-isotopes and trace element mineral zoning and U-series
759	disequilibria in the Laki and Grímsvötn volcanic system. Earth and Planetary Science Letter,
760	245, 245-259.
761	
762	Brugger, C.R., and Hammer, J.E. (2010) Crystal size distribution analysis of plagioclase in
763	experimentally decompressed hydrous rhyodacite magma. Earth and Planetary Letters, 300, 246-
764	254.
765	
766	Brugger, C.R., and Hammer, J.E. (2015) Prevalence of growth twins among anhedral plagioclase
767	microlites. American Mineralogist, 100, 385-395.
768	
769	Cashman, K.V., and Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics
770	and dynamics of crystallization II: Makaopuhi lava lake. Contributions to Mineralogy and
771	Petrology, 99, 292-305.
772	
773	Cashman, K.V. (1993) Relationship between plagioclase crystallization and cooling rate in
774	basaltic melts. Contributions to Mineralogy and Petrology, 113, 126-142.
775	
776	Castro, J.M., Cashman, K.V., and Manga, M. (2003) A technique for measuring 3D crystal size
777	distributions of prismatic microlites in obsidian. American Mineralogist, 88, 1230-1240.
778	

779	Cone, K.A. (2018) Refining crystal size distributions and kinetic histories using automated
780	scanning electron microscopy and manual methods: A hybrid approach, 91 p. M.S. thesis,
781	Colorado School of Mines, Golden.
782	
783	Gottlieb, P., Wilkie, G., Sutherland, D., Ho-tun, E. Suthers, S., Perera, K., Jenkins, B., Spencer,
784	S., Butcher, A.R., and Rayner, J. (2000) Using quantitative electron microscopy for process
785	mineralogy applications. Journal of the Minerals, Metals and Materials Society, 52, 24-25.
786	
787	Gu, Y. (2003) Automated Scanning Electron Microscope Based Mineral Liberation Analysis -
788	An Introduction to JKMRC/FEI Mineral Liberation Analyser. Journal of Minerals and Materials
789	Characterization and Engineering, 2, 33-41.
790	
791	Guilbaud, M.N., Blake, S., Thordarson, T., and Self, S. (2007) Role of syn-eruptive cooling and
792	degassing on textures of lavas from the AD 1783-1784 Laki eruption, south Iceland. Journal of
793	Petrology, 48, 1265-1294.
794	
795	Hammer, J.E., Cashman, K.V., Hoblitt, R.P., and Newman, S., (1999) Degassing and microlite
796	crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines.
797	Bulletin of Volcanology. 60, 355-380.
798	
799	Higgins, M. (2000) Measurement of crystal size distributions. American Mineralogist, 85, 1105-
800	1116.
801	

- 802 Higgins, M. (2006) Quantitative Textural Measurements in Igneous and Metamorphic Petrology.
- 803 Cambridge University Press, Cambridge, 276 pp.
- 804
- Holness, M.B. (2014). The effect of crystallization time on plagioclase grain shape in dolerites.
- 806 Contributions to Mineralogy and Petrology, 168, 1076.
- 807
- 808 Hrstka, T, Gottlieb, P., Skála, R., Breiter, K., and Motl, D. (2018) Automated mineralogy and
- 809 petrology applications of TESCAN Integrated Mineral Analyzer (TIMA). Journal of
- 810 Geosciences, 63, 47-63.
- 811
- 812 Kirkpatrick, R.J. (1977) Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes,
- 813 Kilauea volcano, Hawaii. Geological Society of America Bulletin, 88, 78-84.
- 814
- Launeau, P., and Robin, P.F. (2015) Determination of fabric and strain ellipsoids from measured
- 816 sectional ellipses implementation and applications. Journal of Structural Geology, 27, 2223-

817 2233.

- 818
- 819 Mainprice, D., Bachmann, F., Hielscher, R., and Schaeben, H. (2015) Descriptive tools for the
- 820 analysis of texture projects with large datasets using MTEX: strength, symmetry and
- 821 components. Geological Society of London, Special Publications, 409, 251-271.

- 823 Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of
- 824 crystallization I: Theory. Contributions to Mineralogy and Petrology, 99, 277-291.

825

- 826 Marsh, B.D. (1998) On the interpretation of crystal size distributions in magmatic systems.
- 827 Journal of Petrology, 39, 553-599.

828

- 829 Meurer, W.P., and Boudreau, A.E. (1998) Compaction of igneous cumulates, part II:
- 830 Compaction and the development of igneous foliations. Journal of Geology, 106, 293-304.

831

832 Mock, A., and Jerram, D.A. (2005) Crystal size distributions (CSD) in three dimensions: Insights

from the 3-D reconstruction of a highly porphyritic rhyolite. Journal of Petrology, 46, 1525-

834 1541.

835

836 Morgan, D.J., and Jerram, D.A. (2006) On estimating crystal shape for crystal size distribution

analysis. Journal of Volcanology and Geothermal Research, 154, 1-7.

838

839 Neave, D., Buisman, I., and Maclennan, J. (2017) Continuous mush disaggregation during the

840 long-lasting Laki fissure eruption, Iceland. American Mineralogist, 112, 2007-2021.

841

- 842 Neave, D., Passmore, E., Maclennan, J., Fitton, G., and Thordarson, T. (2013) Crystal-melt
- relationships and the record of deep mixing and crystallization in the AD 1783 Laki eruption,
- 844 Iceland. Journal of Petrology, 54, 1661-1690.

846	Orlando, A., D'Orazio, M., Armienti, P., and Borrini, D. (2008) Experimental determination of
847	plagioclase and clinopyroxene crystal growth rates in the anhydrous trachybasalt from Mt. Etna
848	(Italy). European Jornal of Mineralogy, 20, 653-664.

849

- 850 Passmore, E., Maclennan, J., Fitton, G., and Thordarson, T. (2012) Mush disaggregation in
- basaltic magma chambers: evidence from the ad 1783 Laki eruption. Journal of Petrology, 53,
 2593-2623.
- 853
- Prior, D., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts, G.J.,
- 855 Reddy, S., Spiess, R., Timms, N., Trimby, P., Wheeler, J., and Zetterström, L. (1999). The
- application of backscatter diffraction and orientation contrast imaging in the SEM to textural

problems in rocks. American Mineralogist, 84, 1741-1759.

- 858
- Randolph, A.D., and Larson, M.A. (1971) Theory of particulate processes. Academic Press, New
 York, 251 pp.

- Schneider, C. A., Rasband, W.S., and Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of
 image analysis. Nature Methods, 9, 671-675.
- 864
- Shea, T. and Hammer, J.E. (2013) Kinetics of cooling- and decompression-induced
- 866 crystallization in hydrous mafic-intermediate magmas. Journal of Volcanology and Geothermal
- 867 Research, 260, 127-145.
- 868

869	Skemer, P., Katayama, I., Jiang, Z., and Karato, S. (2005) The misorientation index:
870	Development of a new method for calculating the strength of lattice-preferred orientation.
871	Tectonophysics, 411, 157-167.
872	
873	Sutherland, D. (2007) Estimation of mineral grain size using automated mineralogy. Minerals
874	Engineering, 20, 452-460.
875	
876	Thordarson, T., and Self, S. (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783-
877	1785. Bulletin of Volcanology, 55, 233-263.
878	
879	Xu, C., Zhao, S-R., Li, C., and He, X. (2016) Plagioclase twins in a basalt: an electron
880	backscatter diffraction study. Journal of Applied Crystallography, 49, 2145-2154.
881	
882	
883	
884	
885	
886	
887	
888	
889	
890	
891	

FIGURE CAPTIONS

893

Figure 1. Iceland (smaller inset image, upper left) and the Laki flows (right). Black areas in the 894 895 inset figure represent the Neovolcanic Zone which comprises three tectonically and volcanically 896 active belts initially formed in early Cenozoic; the Zone includes the Eastern Volcanic Zone (2), 897 Western Volcanic Zone (1), and the Northern Volcanic Zone (3) (see inset figure). The shaded 898 red box in the inset represents the area shown in Figure 2 where the two samples were collected. 899 The red dashed circle indicates the approximate region of the underlying mantle plume, derived 900 from Thordarson and Höskuldsson (2008). The orange triangle represents Grímsvötn (Laki 901 Mountain). Internal white areas represent glaciers. The general outline of Iceland and the 902 Neovolcanic Zone locations are modified from Passmore et al. (2012).

903

Figure 2. Discrete crystals within crystal clusters in Sample L-4B, cross polarized light. Image A
shows typical all-cpx clusters as well as isolated cpx crystals (center-left, twinned). Image B
shows the common occurrence of pl+cpx clusters. The cluster on the right shows elongated
plagioclase with indistinct boundaries. Image C shows an all-plagioclase glomerocryst from
sample L-4B, cross polarized light. Note the strong degree of optical continuity as suggested by
shared extinction behavior. This continuity suggests that the individual crystals within the cluster
are similarly oriented.

911

Figure 3. Discrete crystals and crystal cluster types in sample L-E, cross polarized light. Crystal
cluster types are similar to those of L-4B. Note in D the pronounced internal sieving of the
discrete plagioclase phenocryst, suggesting disequilibrium conditions. A and B show discrete

915 and cluster styles of plagioclase, respectively. C shows a slight variation of pl+cpx clustering,
916 where plagioclase microlites are highly elongate.

917

918	Figure 4. Groundmass-only CSD curves generated from BSE images for orthogonal sets of
919	proximal pairs: L-4B 1 is orthogonal and proximal to V4 1, L-4B 2 to V4 2, and L-4B 3 to V4 3.
920	Two aspect ratios representing two slightly different shapes (1:4:8 = prismatic = Figures A and
921	B; 1:8:8 = tabular = Figs. C and D) still produce strong correlations within samples. NE (non-
922	edge) represents BSE analyses that ignore particles that border image edges. E represents BSE
923	analyses where edge-bordering particles were included. Figures A and C (left column) show
924	strong correlations in CSD curve patterns, suggesting similarity in orientation patterns and in
925	contiguity styles of groundmass plagioclase. Divergence occurs at the larger sizes. Floating
926	points at the largest sizes are due to bin counts < 3 . Five bins per decade were used.
927	
928	Figure 5. Comparisons between L-4B and V4 groundmass plagioclase, emphasizing aspect ratio
929	effects from non edge-bordering and edge-bordering BSE image processing in ImageJ. Figures A
930	and B compare the effects of tabular (1:8:8) and prismatic (1:4:8) shapes. Including edge-
931	bordering particles creates flatter curves at the larger L values (Figs. A and B triangular points).
932	Irregularities are likely due to small sample sizes for larger L values. However, trends are similar
933	within each aspect ratio. Figure C shows that L-4B produces greater nucleation population
934	densities than V4. Curve shapes are still similar and differences between 1:4:8 and 1:8:8 curves
935	are strictly due to aspect ratio choice.
936	

Figure 6. Combined results for L-4B and V4 (composite) for a single aspect ratio (1:8:8)

938 reflecting a tabular form with non edge-bordering analysis in ImageJ. C represents the average 939 particle size in µm. Random orientation of tabular plagioclase microlites is assumed for analysis. 940 The V4+L-4B curve (red curve) shows the combined results in CSDCorrections using the three 941 sampled areas for L-4B and the three sampled areas for V4. 942 943 Figure 7. A comparison of CSDs from L-4B and L-E. Length measurements for plagioclase 944 phenocrysts were derived from manual tracings of photomicrographs and from panoramas and 945 isolated-particle images. Four bins per decade were used for Figure A and 5 bins per decade for 946 Figure B. New aspect ratio represents the use of the photomicrograph aspect ratio. The 947 turndowns at the smallest L-values are likely due to an insufficient crystal count for the smallest 948 L-value bins. Figure A shows an insufficient number of the largest phenocrysts such that floating 949 points result. Panorama-sourced measurements consistently create the largest nucleation 950 population densities while isolated-particle images produce the lowest. 951 952 Figure 8. CSD using phenocrysts from a photomicrograph tracing of L-E and groundmass 953 information from a TIMA panorama image and includes all plagioclase species (An_0 to An_{100}). 954 The CSD curve reflects seven bins per decade. Red vertical error bars reflect counting statistics 955 only. Region C represents phenocrysts while regions A and B represent two populations of 956 groundmass roughly separated by the thickness of a standard thin section (30 µm). Increasing 957 length-to-width aspect ratios generally correspond with increasing size populations. 958 959 Figure 9. A complex all-plagioclase glomerocryst with surrounding groundmass, from sample

960 L-E. Figure A shows outlines for 27 discrete crystals visually determined from a

961	photomicrograph. B (BSE image) and C (panoramic image) show the central cluster as a single,
962	contiguous particle. D (EBSD) shows a color orientation map where different colors represent
963	different orientations of plagioclase, and discrete crystals are outlined. The offset in the lower
964	right-corner of D reflects a mis-stich in adjacent field scans, but no crystal measurements with
965	obtained with this image.
966	
967	Supplemental Figure 1. The original billets from L-4B and L-E (the orientations of which are
968	indicated by the blue plane in the top figure) were cut lengthwise down the center and opened
969	and rotated 90° in the direction of the arrows, with the newly exposed faces (red surface in the
970	bottom and top figure) serving as the new surfaces of orthogonally oriented V4 and V1,
971	respectively.
972	
973	Supplemental Figure 2. The red circles represent the six regions from which BSE images were
974	produced. L-4B (upper image, carbon coated) and orthogonally oriented V4 (lower image, pre-
975	carbon coated) were sampled for groundmass crystal lengths only (crystal lengths under 150
976	μ m). Since V4 is produced from a mid-sectional cut along the elongated direction of the billet
977	from L-4B, more proximal areas to regions chosen in L-4B are closer to the upper and lower
978	regions of the elongated direction as shown in V4. Bright region at the bottom-right is due to
979	increased thinness of sample in that area. Field of view is ~30mm across.
980	
981	Supplemental Figure 3. ~300 µm x ~250 µm BSE images from L-4B (Group A). Supplemental

982 Figure 2 shows the location of the sampled groundmass areas. Feldspars appear dark gray.

983	Microlite texture appears random with minimal porosity (Φ) regions chosen. Areas near vesicles
984	were avoided. Lighter phases are olivine, clinopyroxene and opaques.

985

986 Supplemental Figure 4. ~300 μm x ~250 μm BSE images from V4 (Group B), orthogonal to

987 L4B. The three regions are spatially close to group A groundmass areas sampled in

988 Supplemental Figure 1 but represent a perpendicular cut section. Elongated dark gray shapes are

plagioclase, similar to that in Supplemental Figure 3. Only plagioclase $\leq 150 \mu m$ based on the

990 long axis measurement were considered here.

991

992 Supplemental Figure 5. An example of segmenting, or digitally clipping, a larger plagioclase 993 cluster into smaller components. A particle from an isolated-particle image (left) is selected 994 (center-left, in blue) and manually separated into smaller particles. The goal is to create discrete 995 crystals for length measurements in ImageJ. The particle is then automatically placed back into 996 the isolated-particle image (right) by size rank according to the diameter of a best-fit circle.

997

Supplemental Figure 6. L-4B TIMA panoramic SEM-EDS image (A). Plagioclase crystals that
displayed scanning issues, missing pixels or excessive fracturing were manually traced and filled
in (B) by comparing the image to the thin section photomicrograph/polarizing microscope image.

1001

Supplemental Figure 7. L-E TIMA panoramic SEM-EDS image (A). Plagioclase crystals that
displayed scanning issues, missing pixels or excessive fracturing were manually traced and filled
in (B) by comparing the image to the thin section photomicrograph/polarizing microscope image.

1006 **TABLES**

1007

1008 Table 1. Major characteristics of discrete-style (single crystal) phenocrysts. For sample L-E,

rare, tabular occurrences of internally, strongly sieved plagioclase crystals occur. 1009

		Laki basalt phenocryst characteristics (Discrete)								
	Sample	Shape	•							
		pl	up to 0.70	subhedral to euhedral						
	L-4B	cpx	up to 0.15	euhedral, equant						
		ol	up to 0.30	subhedral, equant to subequant						
	_	pl	up to 0.80	subhedral to euhedral						
	L-E	cpx	up to 0.30	equant						
		ol	up to 0.45	subhedral euhedral						
1010										
1011										
1012										
1013										
1014										
1015										
1016										
1017										
1018										
1019										
1020										
1021										
1022										

1023 Table 2. Major characteristics of cluster-style phenocrysts.

	Laki basalt phenocryst characteristics (Cluster)									
	Sample	Style	~Size (mm)	Texture/Observations						
		pl-only	up to 2.0	sometimes continuous extinction; zoned and twinned						
	I (D	cpx-only	up to .25	clusters of two to four crystals						
	L-4B	pl+cpx	up to 1.35	often sub-ophitic with smaller occurrences larger ones are discrete-discrete clusters						
		pl+cpx+ol	up to 0.40	rare						
		pl-only	up to 3.5	microlite flow alignment around largest clusters (product of two joined discrete-clusters?)						
	L-E	cpx-only	cpx-only up to 0.40 up to three contiguous members							
		pl+cpx	up to 2.0	often sub-ophitic; largest cluster contains largest cpx crystals, up to 1.1mm						
		pl+cpx+ol	up to 0.90	rarely observed						
1024										
1025										
1026										
1027										
1028										
1029										
1030										
1031										
1032										
1033										
1034										
1035										

- 1036 Table 3. TIMA results of isolated-particle image editing from multi-field (panorama) phase
- 1037 maps. Column C includes the removal of any particles consisting of fewer than four pixels,
- 1038 resulted from digital clipping. Column B includes mis-stitched and edge-bordering particles.
- 1039 Columns A, B and C are exclusive of each other. Min and Max size columns are derived from
- 1040 TIMA's default size bins and represent bins defined by the diameter of an equal-area circle.

	Multi-field scan characteristics (panorama)									
	Group A	Min size bin (µm)	Max size bin (µm)	No. of fields	(A) No. of particles created	(B) No. of particles deleted	(C) No. of particles created and then deleted	Total number of particles after (A), (B), (C)		
	L-4B		[185, 217)	56	149	33	17	425508		
	L-E	[2.2, 2.6)	[298, 349)	114	4163	661	531	419378		
1041										
1042										
1043										
1044										
1045										
1046										
1047										
1048										
1049										
1050										
1051										
1052										

- 1053 Table 4. Kinetic characteristics derived from the isolated-particle phase images, panoramas, and photomicrographs used to determine
- 1054 CSDs. C = average crystal size, J = nucleation rate and n^0 = nucleation density. Table values were determined as follows, based on an
- assumed crystal growth rate of $G = 10^{-10}$ mm/s: C was calculated using regression slopes from CSDCorrections (m), where C = -1/m;
- 1056 n^0 was determined from directly from CSD corrections; $J = \exp(\ln(n^0)) * G$; and τ is defined as $C/G/(3.154*10^7)$. S: I: L = short:
- 1057 intermediate: long.

CSD characteristics by image ($L \ge 150 \ \mu m$)

Method	Slope		$\ln{(n^0)}(mm^{-4})$		<i>C</i> (mm)		mean τ (days)		$J ({\rm mm-3 \ s^{-1}})$		Aspect ratio (S: I: L)	
	L-4B	L-E	L-4B	L-E	L-4B	L-E	L-4B	L-E	L-4B	L-E	L-4B	L-E
Isolated particle	-5.01	-4.91	3.90	5.75	0.345	0.538	39896	62269	4.94E-09	3.14E-08	1.0: 3.0: 6.0	1.0: 2.1: 5.5
Panorama	-8.58	-6.51	7.04	7.62	0.296	0.324	34213	37500	1.14E-07	2.04E-07	1.0: 2.5: 5.5	1.0: 2.5: 5.0
Manual tracing	-5.62	-6.26	5.51	6.50	0.274	0.339	31713	39236	2.47E-08	6.65E-08	1.0: 3.6: 7.0	1.0: 2.5: 5.0

1060

FIGURES

1061 Figure 1

1063

1064

1065

1066

1067

1068

1070 Figure 2

- 10/0

1085 Figure 3

1100

- 1107
- 1108
- 1109
- 1110

1122

1124

1127

1129

1	1	5	C

- Supplemental Figure 7 1162
- 1163

1167 Figure 4

1179 Figure 5

Figure 8 1207

1208

1209

1218 Figure 9

