REVISION 1

2	Intra-eruptive trachyte-phonolite transition: natural evidences and
3	experimental constraints on the role of crystal mushes
4	
5	Marco Brenna ¹ *, Alessio Pontesilli ¹ , Silvio Mollo ² , Matteo Masotta ³ , Shane J. Cronin ⁴ , Ian
6	E.M. Smith ⁴ , Mohammed Rashad Hassan Moufti ⁵ , Piergiorgio Scarlato ⁶
7	
8	¹ Geology Department, University of Otago, Dunedin, New Zealand
9	² Dipartimento di Scienze della Terra, Sapienza Università di Roma, Rome, Italy
10	³ Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
11	⁴ School of Environment, University of Auckland, Auckland, New Zealand
12	⁵ Faculty of Earth Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
13	⁶ Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
14	* corresponding author: marco.brenna@otago.ac.nz
15	
16	ABSTRACT
17	The generation of silica undersaturated phonolite from silica saturated trachytes is
18	uncommon, as it implies the crossing of the thermal barrier and critical plane of silica
19	undersaturation. Nevertheless, a co-genetic suite displaying compositional transition from
20	benmoreite-trachyte to phonolite has been observed within the Al Shaatha pyroclastic
21	sequence in the Harrat Rahat Volcanic Field (Kingdom of Saudi Arabia). We performed
22	crystallization experiments on benmoreite and trachyte starting compositions in order to
23	simulate the pressure-temperature-volatile conditions that generated the observed liquid line
24	of descent. The experimental conditions were 200-500 MPa, 850-1,150 °C, 0-10 wt.% H ₂ O,
25	0.0-0.5 wt.% CO ₂ and NNO+2 oxygen buffer. The experimental mineral assemblage consists

26	of clinopyroxene, feldspar and titanomagnetite, as well as glass in variable proportions. The
27	degree of crystallinity of hydrous runs is lower than that of anhydrous ones at analogous
28	pressure and temperature conditions. Clinopyroxene crystallizes with compositions diopside-
29	augite and augite-hedenbergite, respectively at 500 MPa and 200 MPa. The saturation of
30	feldspar is primarily controlled by temperature and volatile content, with the more potassic
31	composition equilibrating at low temperature (850-900 °C) and anhydrous (for benmoreite)
32	or hydrous (for trachyte) conditions. At low pressure (200 MPa), temperatures below 850 $^{\circ}\mathrm{C}$
33	and anhydrous conditions, the degree of crystallization is extremely high (>90%) and the
34	residual glass obtained from trachyte experiments is characterized by peralkaline and sodic
35	affinity. This finding is consistent with natural eruptive products containing interstitial
36	phonolitic glass within an anorthoclase framework. The shift from trachyte to phonolite is
37	therefore interpreted as the result of open system interaction between trachytic magma and
38	intercumulus phonolitic melt, as well as of dissolution of anorthoclase from a crystal mush.
39	
40	Keywords: trachyte, phonolite, crystallization experiments, intercumulus melt, crystal mush
41	
42	
43	INTRODUCTION
44	

Phonolites are silica undersaturated alkaline rocks characterized by a higher alkali content
than trachytes. In intraplate volcanic settings, trachytes and phonolites are frequently
associated within the same volcanic system, although phonolites are less abundant (Coombs
et al., 2008; LeMasurier et al., 2011) and traditionally interpreted as the magmatic evolution
of silica undersaturated primary basanitic magmas (Ablay et al., 1998; Coombs and
Wilkinson, 1969; Kyle et al., 1992; Thompson et al., 2001; Wiesmaier et al., 2011; Wörner

51	and Schmincke, 1984). In contrast, the generation of trachytes is often attributed to the
52	magmatic evolution of Si-rich alkaline basalts (Brenna et al., 2012; Brenna et al., 2015;
53	Coombs and Wilkinson, 1969; Davidson and Wilson, 1989; Kim et al., 2018; Martel et al.,
54	2013; Thompson et al., 2001; White et al., 2012). Additional magmatic transitions may occur
55	with general divergences from trachytes towards phonolites or peralkaline rhyolites
56	(Ackerman et al., 2015; Azzouni-Sekkal et al., 2007; Legendre et al., 2005; Upton, 1974). In
57	this context, rhyolites are interpreted to derive by low pressure (<200 MPa) fractionation of
58	trachytic magmas (LeMasurier et al., 2011; Romano et al., 2018), whereas the transition from
59	trachytes to phonolites is less clearly defined due to a variety of pressure-dependent
60	differentiation mechanisms involving variable mineral assemblages. For example, phonolites
61	from the Teide-Pico Viejo stratovolcano (Canary Islands; Andújar and Scaillet, 2012),
62	Laacher See volcano (Germany; Harms et al., 2004), as well as caldera systems at Suswa
63	volcano (White et al., 2012), Ischia (Brown et al., 2014) and Campi Flegrei (Italy; Forni et
64	al., 2016), are modelled to derive through interaction of crystal mushes and magma recharge
65	in shallow crustal (<200 MPa) reservoirs. In the Marie Byrd Land volcanic province
66	(Antarctica), LeMasurier et al. (2011) interpreted the origin of phonolites as the effect of
67	crystal fractionation from trachytic melts stored at intermediate (~300 MPa) pressures. At
68	Ulleung Island (South Korea), Brenna et al. (2014) attributed the formation of phonolites to
69	high pressure (~1 GPa) differentiation mechanisms at the base of the crust. More complex
70	models also invoke crustal contamination/assimilation phenomena as well as potential crustal
71	melting for the generation of diverging trends at the silicic end of the alkaline series (Freda et
72	al., 2008; Kyle et al., 1992; Legendre et al., 2005). Nonetheless, phonolitic eruptions are also
73	known to host peridotitic xenoliths from the upper mantle (Irving and Price, 1981),
74	suggesting deep magma derivation and no crustal interaction. Mixing of shallow-stalled

- phonolitic melts with mantle-derived xenolith-hosting primitive melts may also explain the
 occurrence of peridotite xenoliths (Grant et al., 2013).
- 77

78 Phonolites occur in both composite volcanoes (e.g. Teide, Vesuvius, Ulleung) as well as in magmatic systems that lack a focused plumbing system and hence produce dispersed eruptive 79 80 centres (e.g. East Eifel, Hoggar, Waipiata volcanic fields). These latter systems differ from composite volcanoes in that they have lower magma flux and hence a less sustained 81 82 plumbing system (Valentine and Gregg, 2008). As a consequence, the dynamics of magma 83 storage and evolution in volcanoes with dispersed plumbing will differ from those of long-84 lived crustal systems due to the lower recharge rates and thermal budgets (Cioni et al., 1998; 85 Di Renzo et al., 2016; Ginibre et al., 2004). Because of the lack of mature multistage storage 86 that may obfuscate evolutionary processes, "monogenetic" silicic alkaline eruptions 87 displaying compositional change from trachyte to phonolite provide an opportunity to 88 investigate the magmatic mechanism controlling the transition. Such eruptions are ideal due 89 to their restricted temporal and spatial association, implying chemical transition within a 90 single erupted magma batch, potentially derived from shallow amalgamation of several 91 magma pulses.

92

The trachyte-phonolite association is found in the tephras of the Al Shaatha pyroclastic flow sequence in the Harrat Rahat Volcanic Field (Kingdom of Saudi Arabia; Moufti et al., 2012; Stelten et al., 2018). In this study, we used an experimental approach to investigate the phase relationships of benmoreite and trachytes forming the Al Shaatha eruptive sequence. These experimental results allow to elucidate the *P*-*T*-H₂O-CO₂ conditions controlling mineral crystallization and magma differentiation, with potential implications for the origin of phonolitic melts in dispersed magmatic settings, such as in the Harrat Rahat Volcanic Field.

1	n	n
т.	υ	v

101

102 GEOLOGICAL SETTING

103

104	The Harrat Rahat Volcanic Field (hereafter HRVF) is situated south of the city of Al-
105	Madinah and belongs to a series of lava-dominated volcanic fields aligned sub-parallel to the
106	east coast of the Red Sea and generated in response to the asymmetric rifting there (Fig. 1a)
107	(Bohannon et al., 1989). Volcanism in the area has been active over the past 10 Ma (Moufti
108	et al., 2013), with two monogenetic basaltic eruptions in historic times impacting, with lava
109	flows and tephra fallout, the city of Al-Madinah in 641 and 1256 AD (Fig. 1b; Camp and
110	Roobol, 1989). Lavas in the HRVF vary from alkaline basalt to trachyte with minor
111	intermediate compositions (Moufti et al., 2012; Stelten et al., 2018). They were erupted along
112	with Hawaiian and Strombolian events forming over 950 scoria and spatter cones (exposed)
113	over the lifetime of the field (Camp et al., 1987; Murcia et al., 2014; Runge et al., 2014).
114	Pleistocene trachytic eruptions (~0.1-0.5 Ma) extend over an area of ~20-30 km southeast of
115	the city of Al Madinah (Fig. 1b; Moufti et al., 2013). The more evolved eruptive products are
116	lava domes, tephra and pyroclastic sequences. Magmatic evolution from basaltic parent melts
117	towards the differentiated terms occurred principally through fractional crystallization with
118	minor crustal assimilation (Moufti et al., 2012), and is estimated to have lasted ~10-25 kyr
119	(Stelten et al., 2018).
120	
121	Al Shaatha is an overall trachytic pyroclastic complex with minor benmoreite and phonolite.
122	It is situated to the northwest of the larger Al Efairia volcanic centre (Fig. 1b; Moufti and

- 123 Németh, 2016). The pyroclastic apron covers a pre-existing basaltic volcanic structure (Fig.
- 124 1c), with the subtle 500 m wide crater rising ~100 m above the surrounding landscape. The

125 block-and-ash flow sequence is best exposed to the west of the crater area where a wadi 126 incised the sequence. SH05 was a section that contained the most complete sequence as 127 described in the Electronic Appendix A. The sequence comprises a stack of thick ashy-matrix 128 supported breccias with coarse dominantly trachytic pumice. Matrix comprises fragmented pumice of the same composition. These deposits contain few (<5%) lithics, mainly basaltic 129 130 country rock. These are deposits consistent with particle-rich or dense pyroclastic density current (PDC) deposits. The coarse matrix supported pyroclastic breccias are intercalated 131 132 with finer-grained, poorly sorted lapilli tuffs, with cross bedding indicative of dilute PDCs. 133 The bedded, units contain a greater content of country rock materials (<20% by volume) which is mainly basaltic scoria or lava), but are dominated by similar trachytic high-density 134 135 pumice. The base of the sequence contains a clast-supported lapilli unit, indicative of a tephra 136 fall. This contains up to 60% country rock fragments of basaltic scoria or lava fragments. 137 138 Sharp contacts between units and coarse/thick pyroclastic density currents intercalated with 139 multiply bedded finer grained PDC deposits indicates that the eruption involved a complex 140 sequence of collapses from unstable eruption columns. No evidence for weathering or nonvolcanic erosion occurs between deposition units, so that the sequence was emplaced over 141 142 one extended episode. Some deposits cut into others and pinching and swelling of unit thicknesses in association with topography is consistent with laterally moving currents 143 144 interacting with topography. Welding, where present, crosses several 145 stratigraphic/depositional boundaries, which is also consistent with a short eruption duration, 146 particularly for the upper half of the sequence. 147

148 The primary pyroclastic textures of these materials are similar dense vesiculated and149 microcrystalline trachytes, with increasing porosity from base to the top of the sequence. The

uppermost unit is the most widespread and contains many bread-crusted and cauliflower
bomb textures. The eruption sequence is envisaged as the unroofing/disruption of a strongly
degassed crystalline magma cap, before successive eruption of gas-rich, lower viscosity
magma below. The high crystal content meant that vesicle growth was hindered by the crystal
network and deformed vesicles are ubiquitous. The eruption began with a stable phase,
producing lithic-rich tephra fall as the vent system established. The eruption never reached a
stable sub-Plinian state, and instead repeated collapse occurred - or a series of low-energy
boiling-over columns (Kano et al., 1997; Shea et al., 2011), likely due to low rates of magma
expansion. The final phase was the most energetic, producing PDCs that reached 3 km from
the vent, associated with the highest vesicularities.
We collected juvenile clasts consisting of lapilli and bombs within each of the main
pyroclastic flow units in a comprehensive stratigraphic section representative of the entire
eruptive sequence (Electronic Appendix A). We additionally sampled distal and medial
deposits (Fig. 1c), and their compositional variations are described below.
ANALYTICAL AND EXPERIMENTAL PROCEDURES
Whole rock analyses
Whole rock major element analyses (Table 1) were performed at the School of Environment,
University of Auckland (New Zealand) by X-ray fluorescence (Siemens SR3000
spectrometer). Organic material was removed by sample washing, i.e., soaking in a hot
mixture of HCl and H_2O_2 and cleaning in acetone using ultrasound. Loss-on-ignition (LOI)
was calculated by heating ~4 g of sample for 12 hours at 105 °C and 1,000 °C, respectively.
Then, 2 g of dried sample powder were mixed with 6 g of SPECTRACHEM 12-22 flux. The

175	mixture was fused in a Pt crucible to obtain a homogeneous glassy bead. The oxide
176	components were measured following Norrish & Hutton (1969), with precision better than
177	$\pm 1\%$ (1 σ). The Compton scatter of X-ray tube RhKb1 emission was used to correct for mass
178	attenuation. Theoretical detection limit is 1-2 ppm and reproducibility is $<5\%$ (2 σ).
179	
180	Microchemical analyses
181	Microchemical data (Electronic Appendix B) were acquired with an electron probe
182	microanalyzer (EPMA) using a JEOL JXA 8200 with combined EDS-WDS (five
183	spectrometers with twelve crystals) installed at the HP-HT Laboratory of Experimental
184	Volcanology and Geophysics of the Istituto Nazionale di Geofisica e Vulcanologia (INGV)
185	in Rome, Italy. The accelerating voltage and beam current were 15 kV and 10 nA,
186	respectively. The beam size was 5 μm (glass analyses) and 1 μm (mineral analyses) with a
187	counting time of 20 and 10 s on peaks and background, respectively. The following standards
188	have been adopted for the various chemical elements: jadeite (Si and Na), corundum (Al),
189	augite (Ca), forsterite (Mg), andradite (Fe), rutile (Ti), orthoclase (K), barite (Ba), apatite (P)
190	and spessartine (Mn). Sodium and potassium were analysed first to prevent alkali migration
191	effects. The precision of the microprobe was measured through the analysis of well-
192	characterised synthetic oxides and minerals. Data quality was ensured by analysing these test
193	materials as unknowns according to Iezzi et al. (2014). On the basis of counting statistics,
194	analytical uncertainties relative to their reported concentrations indicate that precision was
195	better than 5% for all cations analysed.
196	
197	Crystallization experiments

198 Crystallization experiments were conducted at the HP-HT Laboratory of the INGV Rome.

199 The starting materials consist of a benmoreite and a trachyte (samples SH1A as SMA and

200 SH5C as SMB, respectively; Table 1) from the Al Shaatha eruptive centre, selected as 201 representative of the parental and intermediate compositions of the eruptive sequence (Fig. 202 2a). We opted to perform experiments only using the erupted magma compositions rather 203 than a hypothetical basaltic parent, because these magma compositions represent the point of interest for the investigation of the transition from trachyte to phonolite. The starting 204 205 materials were melted in a Fe-presaturated Pt-crucible at 1,200 °C for 30 min in a vertical tube CO–CO₂ gas-mixing furnace at the NNO+2 oxygen buffer. The microchemical analyses 206 of the glasses did not reveal the presence of crystalline phases, yielding homogeneous 207 208 compositions comparable to the whole rock analyses (Table 1). Piston cylinder experiments 209 (Table 2) were carried out using a non-end loaded apparatus ("QUICKpress", Depths of the 210 Earth co.) using a 19-25 mm NaCl-borosilicate glass-graphite-MgO assembly producing a 211 redox state close to the NNO+2 oxygen buffer (Masotta et al., 2012). The assembly was 212 simultaneously loaded with two AuPd-capsules containing the starting materials. The 213 crystallization experiments were conducted under either anhydrous or H₂O- and CO₂-bearing 214 conditions. For the nominally anhydrous experiments, the powdered starting materials were 215 dried in an oven at 110 °C for 48 h. For the volatile-bearing experiments, deionized H₂O was 216 added with a microsyringe to the starting materials or, alternatively, CO₂ was added in the 217 form of Ag₂CO₃ powder. After sealing, capsules were heated to 105 °C for 30 minutes and none had weight loss due to volatilization. The benmoreite crystallization experiments 218 219 (Experimental Set A) were conducted at 200-500 MPa representative of shallow and mid 220 crustal storage, 850-1,150 °C, anhydrous to 4.0-10.1 wt.% H₂O, and 0.25-0.5 wt.% CO₂. 221 Conversely, the trachyte crystallization experiments (Experimental Set B) were conducted at 200-500 MPa, 850-1,000 °C, anhydrous to 4.6-7.1 wt.% H₂O, and 0.31 wt.% CO₂. The 222 223 AuPd-capsules placed in the assembly were surrounded by powdered pyrophyllite to prevent H₂O loss and enhance stress homogenization during initial compression (Freda et al., 2001; 224

225	Freda et al., 2008). After cold pressurization to a nominal pressure 10% higher than that
226	desired, the pressure was decreased down to the target value and maintained constant for the
227	duration of the experiment. Experiments were carried out by heating the starting glass from
228	room temperature to the superliquidus condition of 1,200 °C. Note that the anhydrous
229	liquidus temperature is 1,190 °C and 1,179 °C for the benmoreite and trachyte, respectively,
230	as derived by the MELTS code (Ghiorso and Gualda, 2015; Gualda et al., 2012). The
231	temperature was kept constant at superliquidus for 30 min and then decreased at the rate of
232	80 °C/min down to the target temperature. The temperature was monitored by a factory-
233	calibrated K-type (chromel-alumel) thermocouple with uncertainty of ± 3 °C. In order to
234	guarantee the achievement of equilibrium crystallization conditions in benmoreitic and
235	trachytic melts, the experimental time duration was comprised between 24 and 70 h (cf.
236	Masotta et al., 2013). The experiments were isobarically quenched at the rate of 100 °C/s.
237	
238	
239	CHEMOSTRATIGRAPHIC SEQUENCE OF THE AL SHAATHA ERUPTION
240	
241	The eruption forming the Al Shaatha pyroclastic sequence started with a relatively evolved
242	(SiO ₂ -rich) trachyte and phonolite, and transitioned to a less evolved (SiO ₂ -poor) benmoreite
243	emplaced at the top of the eruptive sequence (Table 1, Fig. 2). From bottom to top in the
244	stratigraphy, SiO ₂ , Al ₂ O ₃ and K ₂ O decrease, whilst TiO ₂ , FeO _{tot} , MgO, CaO and P ₂ O ₅
245	increase. The Na ₂ O remains overall constant or increases weakly up stratigraphy, apart for
246	two phonolitic rocks close to the base of the sequence (Fig. 2a, h). Although minor variability
247	may be present within each unit, major heterogeneities are unlikely because the composition
248	
	of the top unit at location SH5 (SH5J) is equivalent to that of SH1A, which is its distal

250

251	The eruptive products range from poorly vesicular (<25%) and crystalline (diktytaxitic
252	texture; groundmass microlites protrude into vesicles and form their walls) trachyte and
253	phonolite at the base of the eruptive sequence, to highly vesicular (>60%) (and diktytaxitic)
254	benmoreite at the top (Fig. 3). Flow textures are well developed in both trachytes and
255	phonolites (Fig. 3b, c). All samples contain <5% microphenocrysts (0.5-1 mm) of feldspar,
256	green (under plane polarized light) hedenbergitic clinopyroxene, fayalitic olivine and
257	magnetite to titanomagnetite in an aphanitic (<0.2 mm) groundmass of feldspar +
258	hedenbergitic clinopyroxene + titanomagnetite. Mineral analyses are reported in Electronic
259	Appendix B. Olivine (Fo_{18-24}) crystals are euhedral and fresh in the benmoreite, whereas they
260	are variably altered to iddingsite in trachyte and phonolite (Fig. 3a, b). Clinopyroxene
261	microphenocrysts in the benmore ite have variable composition $Wo_{43-49}En_{12-26}Fs_{30-41}$, whereas
262	in the trachyte and phonolite the mineral composition is more restricted to $Wo_{45-48}En_{7-11}Fs_{43-1}$
263	₄₆ (Fig. 4 and Elecronic Appendix A). Minimal zonation is present in clinopyroxene
264	microphenocrysts (Fig. 3e) where rims have FeO slightly higher than in cores, and
265	comparable to groundmass clinopyroxene. Feldspar microphenocrysts are mostly oligoclase
266	$(An_{10-25}Ab_{70-80}Or_{10-20})$ in the benmoreite and anorthoclase in trachyte and phonolite
267	$(An_{<10}Ab_{50-80}Or_{15-55}; Fig. 5 and Electronic Appendix B)$ and show no or only minor zonation.
268	The phonolite contains also glomerocrysts of unzoned, sieve-textured anorthoclase and minor
269	hedenbergitic clinopyroxene, analogous in composition to those in the trachyte and phonolite
270	groundmass (Fig. 3d, f). Titanomagnetite is often associated with the mafic microphenocrysts
271	(Fig. 3a, b, c). The benmoreite contains the most titaniferous magnetite with 12 to 18 wt.%
272	TiO_2 , whereas magnetite has TiO_2 varying from 1 to 6 wt.% in the trachyte. Titanomagnetite
273	composition in the phonolite is similar to that of crystals in the benmoreite (Electronic
274	Appendix B). Zircon and apatite occur as rare accessory mineral phases.

275

276

277 EXPERIMENTAL RESULTS

- Anhydrous and hydrous experiments were performed at 850-1,150 °C and 200-500 MPa,
- 279 producing variable proportions of clinopyroxene, feldspar, titanomagnetite and glass, with

trace amounts of apatite. None of the experiments crystallized fayalitic olivine.

281

282 Phase assemblage and texture

283 Back-scattered images of representative run products from Experimental Set A (Fig. 6a, b, c)

and Experimental Set B (Fig. 6d, e, f) show that crystals are generally euhedral with well-

developed faces. Titanomagnetite and glass are ubiquitous in the phase assemblage whereas

286 clinopyroxene and feldspar are present in variable proportions. Feldspar crystallization is

supressed at 1,000-1,150 °C and 10.1 wt.% H₂O in experimental set A (Table 2).

288 Experiments performed at 200 MPa exhibit identical phase assemblages, with the fraction of

residual melt increasing at hydrous conditions (Fig. 7a). Volatile saturation in hydrous

experiments is testified by the presence of vesicles (<5%). The crystallization of feldspar

291 increases remarkably at anhydrous conditions, particularly in the trachyte (Experimental Set

B; Fig. 7b). In contrast, at both hydrous and anhydrous conditions, experiments performed

with the benmoreite (Experimental Set A) exhibit larger proportions of clinopyroxene (Fig.

294 7b). Overall, in the temperature range 850-1,000 $^{\circ}$ C, the effect of H₂O in decreasing the

degree of crystallization prevails over that of temperature (cf. Run# A3 vs. A10, Run# A22

vs. A25, Run# B1b vs. B2, and Run# B3 vs. B4; Table 2). At 850 °C, the experimental

charges are almost completely crystallized, with the exception of minor glassy pockets (Fig. 6

298 c, f).

299	A pressure of 500 MPa subdues both the plagioclase and clinopyroxene saturation surfaces,
300	resulting in more abundant residual glass compared to anhydrous 200 MPa conditions (cf.
301	Run# A21 vs. A25, Run# B1 vs. B2, and Run# B5 vs. B10; Fig. 7a; Table 2). The phase
302	assemblage does not change considerably in CO ₂ -bearing and CO ₂ -absent experiments (cf.
303	Run# A23 vs. A26, and Run# B5 vs. B6, Table 2), denoting a negligible effect of CO_2 on the
304	crystallization behaviour. Traces of apatite are also observed in experiments conducted at
305	850-950 °C, when modal crystallinity is >50%.
306	
307	Mineral chemistry
308	
309	In both Experimental Set A (benmoreite) and Experimental Set B (trachyte), clinopyroxene
310	crystals formed at 500 MPa under either anhydrous or hydrous conditions and exhibits
311	compositions that differ from those of the natural samples, resulting enriched in MgO, Al_2O_3
312	and TiO ₂ (Fig. 4; Electronic Appendix B). The best matching with the natural clinopyroxene
313	is obtained in the benmoreite at 200 MPa and 850-950 °C, under both hydrous (Run# A4 and
314	A5) and anhydrous (Run# A15 and A22) conditions. This clinopyroxene is less calcic than
315	that formed at 1,000-1,150 °C, thus resembling the natural MgO-poor phenocrysts. In turn, at
316	1,000-1,150 °C the composition of clinopyroxene obtained at 200 and 500 MPa does not
317	substantially change. Clinopyroxenes crystallized from the trachytic melt are remarkably

enriched in MgO with respect to those from natural products. However, at 200 MPa and 850

319 °C (Run# B8), the experimental crystals obtained under anhydrous conditions closely

320 reproduce the natural phenocryst compositions.

321

In the experiments with the benmoreite, feldspars obtained under anhydrous conditions
display an increase of Or component from An₂₈Ab₆₃Or₈ to An₆Ab₆₀Or₃₄, with decreasing

324	pressure and temperature (cf. Run# A23 vs. A5). The compositional variability of feldspar in
325	experiments conducted at 500 MPa does not match with that of natural feldspars in the
326	benmoreite, particularly for the different Ab content (Fig. 5; Electronic Appendix B). At 200
327	MPa, the addition of H_2O causes a marked decrease in Or component, with most feldspars
328	from hydrous experiments having composition An ₂₀₋₂₇ Ab ₆₅₋₇₀ Or ₆₋₁₀ . The best overlap is
329	observed at 200 MPa, 900 °C and 4 wt.% H_2O (Run# A15) where feldspar composition
330	ranges from oligoclase to anorthoclase. The Al_2O_3 content and Na_2O/K_2O ratio of
331	experimental crystals are also analogous to those of feldspars in the natural benmoreite.
332	
333	In the experiments with the trachyte, most of the feldspars have compositions $An_{3,17}Ab_{63}$
000	
334	$_{70}\text{Or}_{21-38}$, in good agreement with natural samples. At 500 MPa, the experimental crystals
334 335	$_{70}\text{Or}_{21-38}$, in good agreement with natural samples. At 500 MPa, the experimental crystals cluster towards the Or-poor terms of the natural spectrum (Fig. 5). H ₂ O-bearing experiments
334335336	$_{70}$ Or ₂₁₋₃₈ , in good agreement with natural samples. At 500 MPa, the experimental crystals cluster towards the Or-poor terms of the natural spectrum (Fig. 5). H ₂ O-bearing experiments at $T \le 950$ °C (Run# B3 and B7) have Or component higher than CO ₂ -bearing experiments at
334335336337	⁷⁰ Or ₂₁₋₃₈ , in good agreement with natural samples. At 500 MPa, the experimental crystals cluster towards the Or-poor terms of the natural spectrum (Fig. 5). H ₂ O-bearing experiments at $T \le 950$ °C (Run# B3 and B7) have Or component higher than CO ₂ -bearing experiments at $T \ge 1,000$ °C (Run# B6) (Fig. 5). Hydrous experiments at $T \le 950$ °C and 200 MPa (Run# B3
 334 335 336 337 338 	⁷⁰ Or ₂₁₋₃₈ , in good agreement with natural samples. At 500 MPa, the experimental crystals cluster towards the Or-poor terms of the natural spectrum (Fig. 5). H ₂ O-bearing experiments at $T \le 950$ °C (Run# B3 and B7) have Or component higher than CO ₂ -bearing experiments at $T \ge 1,000$ °C (Run# B6) (Fig. 5). Hydrous experiments at $T \le 950$ °C and 200 MPa (Run# B3 and B7) with feldspar compositions of An ₁₋₅ Ab ₅₅₋₅₉ Or ₃₆₋₄₄ show the best overlap with Or-rich
 334 335 336 337 338 339 	⁷⁰ Or ₂₁₋₃₈ , in good agreement with natural samples. At 500 MPa, the experimental crystals cluster towards the Or-poor terms of the natural spectrum (Fig. 5). H ₂ O-bearing experiments at $T \le 950$ °C (Run# B3 and B7) have Or component higher than CO ₂ -bearing experiments at $T \ge 1,000$ °C (Run# B6) (Fig. 5). Hydrous experiments at $T \le 950$ °C and 200 MPa (Run# B3 and B7) with feldspar compositions of An ₁₋₅ Ab ₅₅₋₅₉ Or ₃₆₋₄₄ show the best overlap with Or-rich data from natural crystals (Fig. 5).
 334 335 336 337 338 339 340 	The orportion of the natural samples. At 500 MPa, the experimental crystals cluster towards the Or-poor terms of the natural spectrum (Fig. 5). H ₂ O-bearing experiments at $T \le 950$ °C (Run# B3 and B7) have Or component higher than CO ₂ -bearing experiments at $T \ge 1,000$ °C (Run# B6) (Fig. 5). Hydrous experiments at $T \le 950$ °C and 200 MPa (Run# B3 and B7) with feldspar compositions of An ₁₋₅ Ab ₅₅₋₅₉ Or ₃₆₋₄₄ show the best overlap with Or-rich data from natural crystals (Fig. 5).

abundance of less than 10 wt.%, being thus quite different from the titaniferous magnetites

naturally occurring in the benmoreite (Electronic Appendix B). TiO₂ abundance generally

decreases at 500 MPa and anhydrous conditions. Only the experimental crystals obtained at

345 200 MPa, 850-900 °C and 4.0- 4.6 wt.% H_2O (Run# A15 and B7) approach the crystals

346 hosted in natural trachyte.

347

348 Glass chemistry

349

350	The Experimental Set A was designed to reproduce the magmatic evolution from benmoreite
351	to trachyte using the benmoreite as starting composition (sample SH5C; Fig. 2a). The
352	experimental glasses evolve from the initial benmoreite depicting decreasing trajectories for
353	FeO, MgO, CaO, Al ₂ O ₃ , and P ₂ O ₅ , as well as increasing $Na_2O + K_2O$ trajectories at
354	increasing SiO ₂ . Al ₂ O ₃ and Na ₂ O show an inflection at ~65 wt.% SiO ₂ (Fig. 8a, b). At
355	hydrous conditions, experiments performed at 200 MPa are characterized by lower SiO_2
356	enrichments than at 500 MPa, irrespective of the temperature (Fig. 8). The general increase in
357	SiO_2 results into lower enrichment of $Na_2O + K_2O$ and Al_2O_3 , and lower depletion in TiO_2
358	compared to the Al Shaatha sequence (Fig. 8a, b, d). In the experimental glasses the
359	Al ₂ O ₃ /CaO ratio diverges from the natural sequence (Fig. 8b), and FeO records a strong
360	depletion vs. MgO compared to the natural samples (Fig. 8c). Nonetheless, anhydrous
361	experiments performed at 200-500 MPa, as well as the hydrous experiment conducted at 200
362	MPa, 850 °C and 7.7 wt.% H ₂ O (Run# A21) exhibit enrichment of Na ₂ O + K ₂ O and
363	depletion of TiO_2 that closely resemble the natural sequence (Fig. 8a, d). At 500 MPa, 1,150
364	°C and anhydrous conditions (Run# A14) there is the best matching between experimental
365	glasses and the chemical transition between benmoreite and trachyte.
366	
367	The Experimental Set B aimed to reproduce the chemical variability to phonolite observed in
368	the natural samples. At 200 and 500 MPa, the experimental glasses display broadly
369	decreasing FeO, CaO, Al ₂ O ₃ , and Na ₂ O concentrations, in concert with broadly increasing

- 370 K_2O contents as SiO₂ increases. The concentration of P₂O₅ and MgO remains relatively
- $\label{eq:2.1} \textbf{371} \quad \text{constant. The anhydrous glasses have } Al_2O_3 \text{ concentrations lower than those measured for}$
- 372 volatile-bearing experiments. At 500 MPa, the hydrous glass compositions record a strong
- depletion of $Na_2O + K_2O$ with respect to the starting material, whereas less effective

374	depletions are observed at 200 MPa (Fig. 9a, c). The glasses resulting from the Experimental
375	Set B have a more restricted SiO ₂ (63-68 wt.%) variability compared to those (58-71 wt.%
376	SiO ₂) from the Experimental Set A. However, because of the overall enrichment in SiO ₂ ,
377	none of the experiments produced glasses with phonolitic compositions. Moreover, the
378	hydrous experiments exhibit the greatest deviation from the natural whole rock analyses. At
379	500 MPa and 1,000-1,150 °C, the anhydrous experiments are characterized by a mild
380	enrichment of $Na_2O + K_2O$. In contrast, a more marked alkali enrichment is documented at
381	200 MPa and 850-950 °C (Run# B2 and B8). These glasses preserve a relative high
382	abundance of MgO and FeO, and a high Al ₂ O ₃ /CaO ratio, pointing towards the compositions
383	of natural phonolites (Fig. 9). The run products from Experimental Set A and Experimental
384	Set B that better reproduce the parageneses of natural rocks are discussed in the next section
385	(Fig. 10).
386	
387	
388	DISCUSSION
389	
390	Magmatic evolution of the Al Shaatha eruptive sequence
391	
392	The rationale behind the experiments conducted on the Al Shaatha sequence was to elucidate
393	the magmatic conditions responsible for the origin of a phonolitic melt. Relative to the
394	different mechanisms that were proposed for the generation of phonolites, the role of crustal
395	partial melting (Hay and Wendlandt, 1995; Legendre et al., 2005) is improbable due to the
396	limited volumes of magmas feeding the eruptions. Direct melting of lithospheric mantle
397	(Laporte et al., 2014) is also excluded by the lack of xenocrysts/xenoliths suggestive of direct
398	magma ascent from mantle depths. On the other hand, crystal fractionation is a commonly

399	advocated mechanism for the generation of phonolite from alkaline parent melts (Andújar
400	and Scaillet, 2012; Brenna et al., 2014; LeMasurier et al., 2011; Wörner and Schmincke,
401	1984). At Al Shaatha, the volcano formed through a single eruptive sequence displaying the
402	transition from benmoreite to trachyte and phonolite. This is not associated to the
403	construction of a composite volcanic edifice deriving from a sustained magmatic plumbing
404	system, and it is therefore unlikely that crustal contamination played a major role. Therefore,
405	experiments from this study were designed to reproduce a phonolitic residual melt through
406	crystallization of benmoreitic and trachytic magmas.
407	
408	Despite the broad range of <i>P</i> - <i>T</i> -H ₂ O-CO ₂ conditions explored by the crystallization
409	experiments, none of the glasses obtained have sensu stricto phonolitic compositions. Only
410	some experimental data describe quite well the compositions of natural minerals and whole
411	rocks belonging to the benmoreite-trachyte geochemical transition. For the Experimental Set
412	A (benmoreite), the glass compositions derived at 500 MPa and 1,150 °C under anhydrous
413	conditions (Run# A14) better reproduce the natural variation of benmoreite to trachytes.
414	Similarly, at 200 MPa and 850-900 °C under hydrous conditions (Run# A15 and A21), the
415	experimental products reproduce the whole rock and microphenocryst (feldspar +
416	clinopyroxene) compositions of the natural benmoreite. The experiments do not crystallize
417	fayalitic olivine despite its stability (euhedral microphenocrysts without resorption features)
418	in the natural benmoreite to trachyte at Al Shaatha, similar to other trachytic sequences
419	(Macdonald et al., 2011). To test its absence, we have performed thermodynamic simulations
420	using the rhyolite-MELTS code (v.1.2.0) (Gualda et al., 2012) based on the detection of
421	phase saturation and energy convergence by Gibbs free energy minimization. These
422	simulations were conducted at 500 MPa, 1,000-800 °C, 5 wt.% $\rm H_2O$ and buffering conditions
423	variable from NNO to NNO+2.2. The benmoreitic melt was used as starting composition and

424	differentiated by a step-by-step crystal fractionation processes in which the temperature was
425	lowered each 20 °C, leading to a maximum degree of solid fraction of 55 wt.%. Results from
426	calculations indicate that, irrespective of the redox state of the melt, clinopyroxene is the
427	liquidus phase followed by oxide. However, the formation of fayalitic olivine (Fo ₈₃₋₈₇) is
428	relegated to a low-temperature (800-860 °C) crystallization path when the system has already
429	fractionated 20 wt.% of minerals and the buffering condition is close to NNO. The degree of
430	olivine fractionation is also extremely low (1-5 wt.%) and basically ineffective during the
431	differentiation of the less oxidized melt.
432	
433	Anhydrous experiments at low temperature exhibit SiO ₂ enrichments higher than those
434	measured in the volatile-bearing products (cf. Run# A4 vs. Run# A20 and A21), with residual
435	melt compositions departing from the phonolite field. In the Experimental Set B (trachyte),
436	only experiments performed at low <i>P</i> - <i>T</i> conditions apparently reproduce the whole rock and
437	mineral compositions observed in the natural samples. The composition of the residual melts
438	in equilibrium with clinopyroxene and feldspar matches with that of Al Shaatha trachytes at
439	200 MPa, 850 °C and anhydrous conditions (Run# B8). These coupled findings from
440	Experimental Sets A and B seem to corroborate a scenario where the overall anhydrous melt
441	crystallized at multiple depths. The benmoreite to trachyte transition likely occurred during
442	ascent from mid- to shallow-crustal levels with the formation of a phonolite melt occurring at
443	relatively shallow levels.
444	

445 Although none of the experiments reproduced in full the whole rock analyses of phonolites,

446 some experimental glasses show chemical characteristics indicative of a shift towards

447 phonolitic affinity. For instance, in volatile-bearing experiments performed with the trachyte

448 and equilibrated at 200 MPa and 850 °C (Run# A20 and partly A21), the residual glasses

449 display an increase of the Na₂O/K₂O ratio from 1.8 to 4.5, which is consistent to what 450 observed for the Al Shaatha phonolites. These experimental products are strongly crystalline with a low fraction of interstitial glass (less than 2%) and diktytaxitic vesicularity (Fig. 6c). 451 452 In comparison, experiments performed with the benmoreite at 200 MPa, 850-900°C and anhydrous conditions (Run# B4 and B8), yield a high crystal content with scarce interstitial 453 454 glass (Fig. 6f). The residual glass composition results more enriched in $Na_2O + K_2O$ relative to the less crystalline experiments gained at high P-T-H₂O conditions. This residual glass, 455 456 however, is dramatically enriched in SiO₂ with respect to natural phonolitic terms. It cannot be excluded that the SiO₂ enrichment is caused by an enhanced stability of the clinopyroxene 457 458 + titanomagnetite assemblage in the experiments with respect to the crystallization of 459 magmas at Al Shaatha. It should be noted that the oxygen fugacity imposed by the piston 460 cylinder assembly (NNO+2 buffer) is almost comparable to that (from NNO+1 to NNO+2.3 461 buffer) documented for trachytes and phonolites from other volcanic settings (Berndt et al., 2001; Fabbrizio and Carroll, 2008; Freise et al., 2003; Martel et al., 2013). This may have 462 463 been slightly lower in the benmoreite due to stability of favalitic olivine. However, 464 iddingsitisation of fayalite in the trachyte and absence of fayalite in the phonolite likely indicate a rise in oxygen fugacity (Caroff et al., 2000) comparable to experimental 465 466 parameters. Rationally, it is hypothesized that classical closed-system crystallization mechanisms cannot be responsible for the overall geochemical evolution of magmas at Al 467 468 Shaatha, especially for the alkali-rich phonolites. In this context, we embrace some 469 perceptions reported in the recent review study of Bachmann and Huber (2016) and 470 illustrating the role of crystalline region (i.e. mush zones) within the mid-to-shallow crustal reservoirs, on the chemical and dynamical evolution of the magmatic system (see discussion 471 472 and model below).

473

474 Late-stage residual phonolitic melt

475

476	One interesting observation from our crystallization experiments is the lack of glass
477	compositions analogue to the natural phonolites (sensu stricto) erupted at Al Shaatha. In this
478	regard, several early experimental works (Bailey and Schairer, 1964; Carmichael and
479	MacKenzie, 1963; Thompson and MacKenzie, 1967) demonstrated that silicic peralkaline
480	melts may evolve to more sodic compositions by abundant crystallization of alkaline
481	feldspar. We found that metaluminous melts become peralkaline at 200 MPa, showing a net
482	increase of the Na ₂ O content and directing the magmatic differentiation towards the
483	phonolitic terms of the Al Shaatha eruptive sequence. This compositional change is more
484	evident for the experiments performed with the trachyte (Experimental Set B), where the
485	crystallization is dominated by alkaline feldspar (anorthoclase) over clinopyroxene,
486	particularly at anhydrous conditions (Fig. 7b). Conversely, in the experiments performed with
487	the benmoreite (Experimental Set A), the residual melts do not gain a peralkaline affinity,
488	despite their compositions showing an increase in the sodic character (Fig. 10).
489	
490	At Al Shaatha we exclude an origin of the trend toward peralkalinity and phonolite solely as
491	a result of the extraction of a feldspar cumulate. Alkaline feldspars in the trachyte have SiO_2
492	~65 wt.% and approximately equal abundances of Na ₂ O and K ₂ O (~6-7 wt.%) (Electronic
493	Appendix B). The two natural samples evolving towards phonolite (which contain the
494	anorthoclase glomerocrysts) show an overall decrease of SiO_2 and increase of Na_2O over
495	K ₂ O compared to the trachyte. It is therefore unlikely that the shift is caused by accumulation
496	or incorporation of feldspar glomerocrysts alone. Nevertheless, it is possible that partial
497	resorption of anorthoclase from a crystal mush zone, as indicated by the sieve texture of

feldspars in the glomerocrysts (Fig. 3d) could have contributed to generation of phonoliticliquids, as previously suggested by Brown et al. (2014).

500

501 Trachytes and phonolites are rarely interpreted as cogenetic magmas originating from the same crystallization path, however, their intimate occurrence requires an explanation. Here 502 503 we draw on several other occurrences where trachyte and phonolite are closely associated, with the aim to better understand the mechanisms that could generate such a transition. The 504 505 Atakor Massif in the Hoggar volcanic province (Algeria) displays two clear diverging 506 chemical trends from trachyte to rhyolite and from trachyte to phonolite (Azzouni-Sekkal et 507 al., 2007). The volcanic products from the Kangerlussuag Intrusion (Greenland) are 508 interpreted as an open-system magma recharge event producing a trachyte-phonolite lineage 509 by crystal fractionation from a basanitic parental magma (Riishuus et al., 2008). The last eruptive activity (~10-2.5 ka) at Ulleung Island (South Korea) formed a tephra sequence 510 511 transitioning from trachytic to phonolitic compositions (Brenna et al., 2014; McLean et al., 512 2018 and references therein). Brenna et al. (2014) proposed that the late crystallization of 513 plagioclase from the trachytic magma at lower crustal conditions caused SiO₂ depletion and $Na_2O + K_2O$ enrichment in the residual phonolitic melts. At Ulleung Island some cognate 514 515 enclaves occur within the tephra representative of the trachyte-phonolite transition (Brenna et 516 al., 2014). One of these cognate enclaves is a syenitic cumulate consisting of an intricate 517 framework of alkaline feldspar and green sodic clinopyroxene, with also minor oxides and 518 interstitial vesiculated glass. This interstitial glass has composition extending further into the 519 phonolite field compared to the Al Shaatha eruptive sequence, thus suggesting melt 520 extraction from a crystal-rich zone and further entrainment in the ascending magma (Hildreth 521 and Wilson, 2007). Similar cognate enclaves largely consisting of alkaline feldspar (sanidinites) have been also observed in the eruptive deposits of the major phonolitic 522

523	eruptions of the Sabatini Volcanic District (central Italy) and interpreted as part of
524	differentiated crystal mushes (Masotta et al., 2016). Complex crystallization and magma
525	recharge events feeding trachytic/phonolitic magmatic reservoirs may lead to crystallization
526	and resorption of selected mineral phases (e.g. anorthoclase), which could shift the melt
527	composition between the two compositional fields (Brown et al., 2014; Ridolfi et al., 2006;
528	White et al., 2012). Indeed, the development of a crystal mush is one of the most effective
529	mechanisms controlling the textural and compositional variations of silicic products, such as
530	trachytes and phonolites (Masotta et al., 2010). In this framework, the magmatic
531	differentiation is intimately correlated to the interplay between crystal accumulation and melt
532	extraction (Bachmann and Bergantz, 2004; Dufek and Bachmann, 2010; Huber et al., 2009),
533	where crystal-rich enclaves testify to the solid residual of the crystal-melt separation
534	processes (Forni et al., 2016; Forni et al., 2018; Masotta et al., 2016).
535	
536	In the case of Al Shaatha eruptions, several glomerocrysts and/or cognate microenclaves of
537	anorthoclase and hedenbergitic clinopyroxene occur in the phonolitic tephra (Fig. 3d).
538	Because of the limited eruptive volume and history, these glomerocrysts may represent
539	disrupted portions of a crystal mush related to earlier stalled intrusions, rather than major
540	crustal reservoirs like in classical large caldera systems (Fig. 11). Interstitial phonolitic melts
541	originated in such a relatively short-lived reservoir and eventually interacted with
542	benmoreitic/trachytic melts at shallow crustal levels (Fig. 11) (Dufek and Bachmann, 2010;
543	Thompson et al., 2001). We tested this hypothesis by mass balance calculations performed
544	with the Petrograph software (Petrelli et al., 2005) and based on least-square modelling
545	equations of Stormer and Nicholls (1978). Using as input parameters major oxide analyses of
546	natural samples and experimental phases (Table 3), the model successfully reproduces the
547	variation from the trachyte SH5C (i.e., the starting material of Experimental Set B) to the

548	phonolite SH5E. This model does not imply that a liquid reservoir formed with phonolite
549	composition, but simply simulates the composition of a residual interstitial melt following
550	extensive crystallization. The overall amount of crystallization necessary to generate the
551	phonolitic melt is ~80%, with modal abundances of 89% K-feldspar, 6% clinopyroxene and
552	5% oxide (Table 3). This compositional variation is consistent with the experimental glass
553	obtained at 200 MPa, 850 °C and anhydrous conditions, in response to abundant
554	crystallization (Run# A20 and A21; Table 2). The sum of the squared residuals (SSR) yields
555	a reliable value of 0.44, making the modelling results realistic for the Al Shaatha eruptive
556	sequence. It can be thus concluded that the formation of materials with phonolitic affinities
557	may be related to the development of a crystal mush and further crystal-melt separation
558	mechanisms (Bachmann and Bergantz, 2004). Coherently, other authors (Caroff et al., 1997;
559	Panter et al., 1997) have effectively demonstrated as the fractionation of clinopyroxene and
560	abundant feldspar from alkaline basalts/basanites may produce $\sim 20\%$ of residual phonolitic
561	magmas, in close agreement with the melt proportion obtained in this study (Table 3).

562

563

564 IMPLICATIONS

565

The peralkaline and sodic character of Al Shaatha eruptive products testifies to complex
mechanisms of magma differentiation that determine the transition from SiO₂-saturated
trachytes to SiO₂-undersaturated phonolites. To better understand the mechanisms behind this
transition, we have performed crystallization experiments at mid- and upper-crustal pressures
and temperature and a range of volatile conditions, using as starting materials benmoreitic
and trachytic rocks from the Al Shaatha pyroclastic sequence in the Harrat Rahat Volcanic
Field (Kingdom of Saudi Arabia). The experimental results suggest that, at 500 MPa and

573 1,000-1,150 °C, the Al Shaatha benmoreitic magma differentiated towards trachytic 574 compositions through crystallization of clinopyroxene, feldspar (oligoclase) and titanomagnetite. Experiments conducted at 200 MPa and 950-850 °C suggest that the 575 576 formation of trachytic magmas continues at shallower crustal levels and lower temperatures. Although none of the investigated experimental conditions reproduced the alkali increase 577 578 coupled with a decrease or unchanged SiO₂, the overall peralkaline and sodic character of the experimental glasses increases at low-P and low-T, analogously to the natural transition from 579 580 trachyte to phonolite. The inconsistency between natural and experimental data suggest that 581 the SiO₂-undersaturated phonolitic magmas constituting the Al Shaatha pyroclastic sequence 582 originated at open-system-like conditions through crystallization of anorthoclase from an 583 initially SiO₂-saturated trachytic liquid. Crystallization of an alkali feldspar-dominated phase 584 assemblage is supported by the occurrence of glomerocrysts constituted in the largest part by 585 anorthoclase (Fig. 3d), although the mass balance calculations indicate a high amount of crystallization (80%). This could potentially lock up the melt within the crystal mush 586 587 (Deering et al., 2011). However, physical disturbance by later injections could generate melt 588 channels within the mush like what has been documented and modelled to occur within the mantle to mobilize very low degrees of partial melts (Katz et al., 2006). A complex interplay 589 590 of crystallization, anorthoclase resorption, melt segregation and mixing occurring through a 591 vertically developed mush pile could determine the transition from trachytic to phonolitic 592 magma compositions. In this scenario, the highly crystalline portion of the shallower 593 intrusion is interpreted to evolve into a crystal-rich mush zone, from which interstitial melts 594 with a strong phonolitic affinity are progressively extracted and, to variable extent, interact 595 with trachytic magmas (Fig. 11).

596

597 ACKNOWLEDGEMENTS

598	This project was supported by a University of Otago Research Grant (UORG) to MB. King
599	Abdulaziz University and the University of Auckland supported field and sampling costs
600	through the VORISA project. Manuela Nazzari provided helpful assistance with EPMA
601	analyses at INGV Rome. We thank Katy Chamberlain and an anonymous reviewer for
602	constructive comments and Dan Morgan for editorial handling.
603	
604	References
605	Ablay, G.J., Carroll, M.R., Palmer, M.R., Martí, J., and Sparks, R.S.J. (1998) Basanite-
606	Phonolite Lineages of the Teide-Pico Viejo Volcanic Complex, Tenerife, Canary
607	Islands. Journal of Petrology, 39(5), 905-936.
608	Ackerman, L., Ulrych, J., Řanda, Z., Erban, V., Hegner, E., Magna, T., Balogh, K., Frána, J.,
609	Lang, M., and Novák, J.K. (2015) Geochemical characteristics and petrogenesis of
610	phonolites and trachytic rocks from the České Středohoří Volcanic Complex, the
611	Ohře Rift, Bohemian Massif. Lithos, 224, 256-271.
612	Andújar, J., and Scaillet, B. (2012) Experimental Constraints on Parameters Controlling the
613	Difference in the Eruptive Dynamics of Phonolitic Magmas: the Case of Tenerife
614	(Canary Islands). Journal of Petrology, 53(9), 1777-1806.
615	Azzouni-Sekkal, A., Bonin, B., Benhallou, A., Yahiaoui, R., and Liégeois, JP. (2007)
616	Cenozoic alkaline volcanism of the Atakor massif, Hoggar, Algeria. Cenozoic
617	volcanism in the Mediterranean area, 418, 321.
618	Bachmann, O., and Bergantz, G.W. (2004) On the origin of crystal-poor rhyolites: extracted
619	from batholithic crystal mushes. Journal of Petrology, 45(8), 1565-1582.
620	Bachmann, O., and Huber, C. (2016) Silicic magma reservoirs in the Earth's crust. American
621	Mineralogist, 101(11), 2377-2404.

622	Bailey, D., and Schairer, J. (1964) Feldspar-liquid equilibria in peralkaline liquids; the
623	orthoclase effect. American Journal of Science, 262(10), 1198-1206.
624	Berndt, J., Holtz, F., and Koepke, J. (2001) Experimental constraints on storage conditions in
625	the chemically zoned phonolitic magma chamber of the Laacher See volcano.
626	Contributions to Mineralogy and Petrology, 140(4), 469-486.
627	Bohannon, R.G., Naeser, C.W., Schmidt, D.L., and Zimmermann, R.A. (1989) The timing of
628	uplift, volcanism, and rifting peripheral to the Red Sea: a case for passive rifting?
629	Journal of Geophysical Research: Solid Earth, 94(B2), 1683-1701.
630	Brenna, M., Cronin, S.J., Smith, I.E.M., Sohn, Y.K., and Maas, R. (2012) Spatio-temporal
631	evolution of a dispersed magmatic system and its implications for volcano growth,
632	Jeju Island Volcanic Field, Korea. Lithos, 148(0), 337-352.
633	Brenna, M., Nakada, S., Miura, D., Toshida, K., Ito, H., Hokanishi, N., and Nakai, S.i. (2015)
634	A trachyte-syenite core within a basaltic nest: filtering of primitive injections by a
635	multi-stage magma plumbing system (Oki-Dōzen, south-west Japan). Contributions to
636	Mineralogy and Petrology, 170(2), 1-21.
637	Brenna, M., Price, R., Cronin, S.J., Smith, I.E.M., Sohn, Y.K., Kim, G.B., and Maas, R.
638	(2014) Final magma storage depth modulation of explosivity and trachyte/phonolite
639	genesis at an intraplate volcano: a case study from Ulleung Island, Republic of Korea.
640	Journal of Petrology, 55(4), 709-747.
641	Brown, R., Civetta, L., Arienzo, I., D'Antonio, M., Moretti, R., Orsi, G., Tomlinson, E.,
642	Albert, P., and Menzies, M. (2014) Geochemical and isotopic insights into the
643	assembly, evolution and disruption of a magmatic plumbing system before and after a
644	cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contributions to
645	Mineralogy and Petrology, 168(3), 1035.

- 646 Camp, V.E., Hooper, P.R., Roobol, M.J., and White, D. (1987) The Madinah eruption, Saudi
- 647 Arabia: magma mixing and simultaneous extrusion of three basaltic chemical types.
- 648 Bulletin of Volcanology, 49(2), 489-508.
- 649 Camp, V.E., and Roobol, M.J. (1989) The Arabian continental alkali basalt province: Part I.
- Evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geological Society of America
 Bulletin, 101(1), 71-95.
- 652 Carmichael, I.S.E., and MacKenzie, W. (1963) Feldspar-liquid equilibria in pantellerites; an
 653 experimental study. American Journal of Science, 261(4), 382-396.
- Caroff, M., Ambrics, C., Maury, R., and Cotten, J. (1997) From alkali basalt to phonolite in
 hand-size samples: vapor-differentiation effects in the Bouzentes lava flow (Cantal,
- France). Journal of Volcanology and Geothermal Research, 79(1), 47-61.
- 657 Caroff, M., Maury, R.C., Cotten, J., and Clément, J.-P. (2000) Segregation structures in
 658 vapor-differentiated basaltic flows. Bulletin of Volcanology, 62(3), 171-187.
- Cioni, R., Marianelli, P., and Santacroce, R. (1998) Thermal and compositional evolution of
 the shallow magma chambers of Vesuvius: evidence from pyroxene phenocrysts and
 melt inclusions. Journal of Geophysical Research: Solid Earth, 103(B8), 18277-
- **662** 18294.
- 663 Coombs, D.S., Adams, C.J., Roser, B.P., and Reay, A. (2008) Geochronology and
- geochemistry of the Dunedin Volcanic Group, eastern Otago, New Zealand. New
 Zealand journal of geology and geophysics, 51(3), 195-218.
- 666 Coombs, D.S., and Wilkinson, J.F.G. (1969) Lineages and Fractionation Trends in
- 667 Undersaturated Volcanic Rocks from the East Otago Volcanic Province (New
 668 Zealand) and Related Rocks. Journal of Petrology, 10(3), 440-501.

669	Davidson, J.P., and Wilson, I.R. (1989) Evolution of an alkali basalt-trachyte suite from
670	Jebel Marra volcano, Sudan, through assimilation and fractional crystallization. Earth
671	and Planetary Science Letters, 95(1-2), 141-160.
672	Deering, C., Cole, J., and Vogel, T. (2011) Extraction of crystal-poor rhyolite from a
673	hornblende-bearing intermediate mush: a case study of the caldera-forming Matahina
674	eruption, Okataina volcanic complex. Contributions to Mineralogy and Petrology,
675	161(1), 129-151.
676	Di Renzo, V., Wohletz, K., Civetta, L., Moretti, R., Orsi, G., and Gasparini, P. (2016) The
677	thermal regime of the Campi Flegrei magmatic system reconstructed through 3D
678	numerical simulations. Journal of Volcanology and Geothermal Research, 328, 210-
679	221.
680	Dufek, J., and Bachmann, O. (2010) Quantum magmatism: Magmatic compositional gaps
681	generated by melt-crystal dynamics. Geology, 38(8), 687-690.
682	Fabbrizio, A., and Carroll, M.R. (2008) Experimental constraints on the differentiation
683	process and pre-eruptive conditions in the magmatic system of Phlegraean Fields
684	(Naples, Italy). Journal of Volcanology and Geothermal Research, 171(1-2), 88-102.
685	Forni, F., Bachmann, O., Mollo, S., De Astis, G., Gelman, S.E., and Ellis, B.S. (2016) The
686	origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber
687	(Campi Flegrei, Italy). Earth and Planetary Science Letters, 449, 259-271.
688	Forni, F., Degruyter, W., Bachmann, O., De Astis, G., and Mollo, S. (2018) Long-term
689	magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei.
690	Science Advances, 4(11), eaat9401.
691	Freda, C., Baker, D., and Ottolini, L. (2001) Reduction of water loss from gold-palladium
692	capsules during piston-cylinder experiments by use of pyrophyllite powder. American
693	Mineralogist, 86(3), 234-237.

0.5 1 10000, 0.5 000000, 111, 1110101, 1.5 111010, 0.5 D 0111, D., 0110 D 001100, 1.5 2000/1110	694	Freda, C.,	, Gaeta, M.	, Misiti, V.	. Mollo.	S., Dolfi,	D.,	and Scarlato,	P. ((2008)	Magm
---	-----	------------	-------------	--------------	----------	------------	-----	---------------	------	--------	------

- 695 carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills
 696 (Central Italy). Lithos, 101(3-4), 397-415.
- 697 Freise, M., Holtz, F., Koepke, J., Scoates, J., and Leyrit, H. (2003) Experimental constraints
- on the storage conditions of phonolites from the Kerguelen Archipelago.
- 699 Contributions to Mineralogy and Petrology, 145(6), 659-672.
- Ghiorso, M.S., and Gualda, G.A. (2015) An H 2 O–CO 2 mixed fluid saturation model
 compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology,
- 702 169(6), 53.
- Ginibre, C., Wörner, G., and Kronz, A. (2004) Structure and dynamics of the Laacher See
 magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a
 cathodoluminescence and electron microprobe study. Journal of Petrology, 45(11),
 2197-2223.
- Grant, T.B., Milke, R., Pandey, S., and Jahnke, H. (2013) The Heldburg Phonolite, Central
 Germany: Reactions between phonolite and xenocrysts from the upper mantle and
 lower crust. Lithos, 182, 86-101.
- 710 Gualda, G.A., Ghiorso, M.S., Lemons, R.V., and Carley, T.L. (2012) Rhyolite-MELTS: a
- 711 modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic
 712 systems. Journal of Petrology, 53(5), 875-890.
- Harms, E., Gardner, J.E., and Schmincke, H.U. (2004) Phase equilibria of the Lower Laacher
 See Tephra (East Eifel, Germany): constraints on pre-eruptive storage conditions of a
 phonolitic magma reservoir. Journal of Volcanology and Geothermal Research,
- 716 134(1–2), 125-138.
- 717 Hay, D.E., and Wendlandt, R.F. (1995) The origin of Kenya rift plateau-type flood
- 718 phonolites: Results of high-pressure/high-temperature experiments in the systems

719	phonolite-H2O and phonolite-H2O-CO2. Journal of Geophysical Research: Solid
720	Earth, 100(B1), 401-410.
721	Hildreth, W., and Wilson, C.J. (2007) Compositional zoning of the Bishop Tuff. Journal of
722	Petrology, 48(5), 951-999.
723	Huber, C., Bachmann, O., and Manga, M. (2009) Homogenization processes in silicic magma
724	chambers by stirring and mushification (latent heat buffering). Earth and Planetary
725	Science Letters, 283(1-4), 38-47.
726	Iezzi, G., Mollo, S., Shahini, E., Cavallo, A., and Scarlato, P. (2014) The cooling kinetics of
727	plagioclase feldspar as revealed by electron-microprobe mapping. American
728	Mineralogist, 99(5-6), 898-907.
729	Irving, A.J., and Price, R.C. (1981) Geochemistry and evolution of Iherzolite-bearing
730	phonolitic lavas from Nigeria, Australia, East Germany and New Zealand.
731	Geochimica et Cosmochimica Acta, 45(8), 1309-1320.
732	Kano, K., Matsuura, H., and Yamauchi, S. (1997) Miocene rhyolitic welded tuff infilling a
733	funnel-shaped eruption conduit Shiotani, southeast of Matsue, SW Japan. Bulletin of
734	Volcanology, 59(2), 125-135.
735	Katz, R.F., Spiegelman, M., and Holtzman, B. (2006) The dynamics of melt and shear
736	localization in partially molten aggregates. Nature, 442(7103), 676.
737	Kim, J., Park, JW., Lee, M.J., Lee, J.I., and Kyle, P.R. (2018) Evolution of alkalic magma
738	systems: insight from coeval evolution of sodic and potassic fractionation lineages at
739	the Pleiades volcanic complex, Antarctica. Journal of Petrology, 60(1), 117-150.
740	Kyle, P., Moore, J., and Thirlwall, M. (1992) Petrologic evolution of anorthoclase phonolite
741	lavas at Mount Erebus, Ross Island, Antarctica. Journal of Petrology, 33(4), 849-875.

742	Laporte, D., Lambart, S., Schiano, P., and Ottolini, L. (2014) Experimental derivation of
743	nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites.
744	Earth and Planetary Science Letters, 404, 319-331.
745	Le Maitre, R.W. (2002) Igneous Rocks: A Classification and Glossary of Terms. 240 p.
746	Cambridge University Press.
747	Legendre, C., Maury, R.C., Caroff, M., Guillou, H., Cotten, J., Chauvel, C., Bollinger, C.,
748	Hémond, C., Guille, G., Blais, S., Rossi, P., and Savanier, D. (2005) Origin of
749	Exceptionally Abundant Phonolites on Ua Pou Island (Marquesas, French Polynesia):
750	Partial Melting of Basanites Followed by Crustal Contamination. Journal of
751	Petrology, 46(9), 1925-1962.
752	LeMasurier, W., Choi, S., Kawachi, Y., Mukasa, S., and Rogers, N.W. (2011) Evolution of
753	pantellerite-trachyte-phonolite volcanoes by fractional crystallization of basanite
754	magma in a continental rift setting, Marie Byrd Land, Antarctica. Contributions to
755	Mineralogy and Petrology, 162(6), 1175-1199.
756	Macdonald, R., Bagiński, B., Leat, P.T., White, J.C., and Dzierżanowski, P. (2011) Mineral
757	stability in peralkaline silicic rocks: information from trachytes of the Menengai
758	volcano, Kenya. Lithos, 125(1-2), 553-568.
759	Martel, C., Champallier, R., Prouteau, G., Pichavant, M., Arbaret, L., Balcone-Boissard, H.,
760	Boudon, G., Boivin, P., Bourdier, JL., and Scaillet, B. (2013) Trachyte phase
761	relations and implication for magma storage conditions in the Chaîne des Puys
762	(French Massif Central). Journal of Petrology, 54(6), 1071-1107.
763	Masotta, M., Freda, C., and Gaeta, M. (2012) Origin of crystal-poor, differentiated magmas:
764	insights from thermal gradient experiments. Contributions to Mineralogy and
765	Petrology, 163(1), 49-65.

766	Masotta, M., Gaeta, M., Gozzi, F., Marra, F., Palladino, D., and Sottili, G. (2010) H 2 O-and
767	temperature-zoning in magma chambers: the example of the Tufo Giallo della Via
768	Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos, 118(1), 119-130.
769	Masotta, M., Mollo, S., Freda, C., Gaeta, M., and Moore, G. (2013) Clinopyroxene-liquid
770	thermometers and barometers specific to alkaline differentiated magmas.
771	Contributions to Mineralogy and Petrology, 166(6), 1545-1561.
772	Masotta, M., Mollo, S., Gaeta, M., and Freda, C. (2016) Melt extraction in mush zones: The
773	case of crystal-rich enclaves at the Sabatini Volcanic District (central Italy). Lithos,
774	248, 288-292.
775	McLean, D., Albert, P.G., Nakagawa, T., Suzuki, T., Staff, R.A., Yamada, K., Kitaba, I.,
776	Haraguchi, T., Kitagawa, J., and Members, S.P. (2018) Integrating the Holocene
777	tephrostratigraphy for East Asia using a high-resolution cryptotephra study from Lake
778	Suigetsu (SG14 core), central Japan. Quaternary Science Reviews, 183, 36-58.
779	Moufti, M., Moghazi, A., and Ali, K. (2013) 40 Ar/39 Ar geochronology of the Neogene-
780	Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia:
781	implications for duration and migration of volcanic activity. Journal of Asian Earth
782	Sciences, 62, 253-268.
783	Moufti, M.R., Moghazi, A.M., and Ali, K.A. (2012) Geochemistry and Sr-Nd-Pb isotopic
784	composition of the Harrat Al-Madinah Volcanic Field, Saudi Arabia. Gondwana
785	Research, 21(2–3), 670-689.
786	Moufti, M.R., and Németh, K. (2016) Geoheritage of Volcanic Harrats in Saudi Arabia.
787	Springer.
788	Murcia, H., Németh, K., Moufti, M.R., Lindsay, J.M., El-Masry, N., Cronin, S.J., Qaddah,
789	A., and Smith, I.E.M. (2014) Late Holocene lava flow morphotypes of northern

790	Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of
791	continental lava fields. Journal of Asian Earth Sciences, 84(0), 131-145.
792	Norrish, K., and Hutton, J.T. (1969) An accurate X-ray spectrographic method for the
793	analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta,
794	33(4), 431-453.
795	Panter, K.S., Kyle, P.R., and Smellie, J.L. (1997) Petrogenesis of a Phonolite-Trachyte
796	Succession at Mount Sidley, Marie Byrd Land, Antarctica. Journal of Petrology,
797	38(9), 1225-1253.
798	Petrelli, M., Poli, G., Perugini, D., and Peccerillo, A. (2005) PetroGraph: A new software to
799	visualize, model, and present geochemical data in igneous petrology. Geochemistry,
800	Geophysics, Geosystems (G ³), 6, Q07011.
801	Ridolfi, F., Renzulli, A., Macdonald, R., and Upton, B.G.J. (2006) Peralkaline syenite
802	autoliths from Kilombe volcano, Kenya Rift Valley: Evidence for subvolcanic
803	interaction with carbonatitic fluids. Lithos, 91(1-4), 373-392.
804	Riishuus, M.S., Peate, D.W., Tegner, C., Wilson, J.R., and Brooks, C.K. (2008) Petrogenesis
805	of cogenetic silica-oversaturated and-undersaturated syenites by periodic recharge in a
806	crustally contaminated magma chamber: the Kangerlussuaq intrusion, East
807	Greenland. Journal of Petrology, 49(3), 493-522.
808	Romano, P., Andújar, J., Scaillet, B., Romengo, N., Di Carlo, I., and Rotolo, S.G. (2018)
809	Phase equilibria of Pantelleria trachytes (Italy): constraints on pre-eruptive conditions
810	and on the metaluminous to peralkaline transition in silicic magmas. Journal of
811	Petrology.
812	Runge, M.G., Bebbington, M.S., Cronin, S.J., Lindsay, J.M., Kenedi, C.L., and Moufti,
813	M.R.H. (2014) Vents to events: determining an eruption event record from volcanic

814	vent structures for the Harrat Rahat, Saudi Arabia. Bulletin of Volcanology, 76(3), 1-
815	16.
816	Shea, T., Gurioli, L., Houghton, B.F., Cioni, R., and Cashman, K.V. (2011) Column collapse
817	and generation of pyroclastic density currents during the AD 79 eruption of Vesuvius:
818	the role of pyroclast density. Geology, 39(7), 695-698.
819	Stelten, M.E., Downs, D.T., Dietterich, H.R., Mahood, G.A., Calvert, A.T., Sisson, T.W.,
820	Zahran, H., and Shawali, J. (2018) Timescales of magmatic differentiation from alkali
821	basalt to trachyte within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia.
822	Contributions to Mineralogy and Petrology, 173(8), 68.
823	Stormer, J.C.J., and Nicholls, J. (1978) XLFRAC: a program for the interactive testing of
824	magmatic differentiation models. Computers & Geosciences, 4, 143-159.
825	Thompson, G., Smith, I., and Malpas, J. (2001) Origin of oceanic phonolites by crystal
826	fractionation and the problem of the Daly gap: an example from Rarotonga.
827	Contributions to Mineralogy and Petrology, 142(3), 336-346.
828	Thompson, R.N., and MacKenzie, W. (1967) Feldspar-liquid equilibria in peralkaline acid
829	liquids; an experimental study. American Journal of Science, 265(8), 714-734.
830	Upton, B. (1974) The alkaline province of south-west Greenland, p. 221-238. John Wiley &
831	Sons, Chichester, UK.
832	Valentine, G., and Gregg, T. (2008) Continental basaltic volcanoes—processes and problems.
833	Journal of Volcanology and Geothermal Research, 177(4), 857-873.
834	White, J.C., Espejel-García, V.V., Anthony, E.Y., and Omenda, P. (2012) Open System
835	evolution of peralkaline trachyte and phonolite from the Suswa volcano, Kenya rift.
836	Lithos, 152(0), 84-104.
837	Wiesmaier, S., Deegan, F.M., Troll, V.R., Carracedo, J.C., Chadwick, J.P., and Chew, D.M.
838	(2011) Magma mixing in the 1100 AD Montaña Reventada composite lava flow,

- 839 Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing
- systems. Contributions to Mineralogy and Petrology, 162(3), 651-669.
- 841 Wörner, G., and Schmincke, H.-U. (1984) Petrogenesis of the Zoned Laacher See Tephra.
- S42 Journal of Petrology, 25(4), 836-851.
- 843

844 Figure captions

- 845 *Figure 1. a)* Location of Cenozoic intraplate volcanic area in the Arabian Plate. b) The
- 846 Harrat Rahat Volcanic Field (outline dashed) encroaches the southern suburbs of Al-
- 847 Madinah city (shaded). The principal evolved eruptive centres occur in the central portion of
- 848 *the field. c) The Al Shaatha pyroclastic deposit are light brown, and the pre-eruptive basaltic*
- 849 basement is dark grey/black. Location of the sampled sections (SH01 to SH05) of the Al
- 850 Shaatha eruption along a wadi on the western side of the volcano. The crater rim (dashed) is
- a very subdued geomorphic feature. Base images for a), b) and c) are from Google Earth,
- 852 Landsat, Copernicus, DigitalGlobe.
- 853

854

- 855 Figure 2. a) Total alkali vs. silica (TAS) diagram (Le Maitre, 2002) showing whole rock
- 856 *compositions of the Al Shaatha eruptive sequence. The pink area indicates the overall*
- 857 products from the Harrat Rahat Volcanic Field (Moufti et al., 2012). SMA and SMB refer to
- 858 starting materials for Experimental Sets A and B respectively. b-j) stratigraphically ordered
- 859 chemical variability in the Al Shaatha eruption from samples collected at localities SH05 and
- 860 *SH01 (top)*.

861

- **862** *Figure 3. Representative photomicrographs (PPL) of selected Al Shaatha eruption products*
- 863 (lapilli and bombs). a) benmoreite with fayalitic olivine (Ol), clinopyroxene (Cpx), feldspar

- 864 (Feld) and titanomagnetite (Ti-Mag) microphenocrysts in a vesiculated (ves) groundmass of
- 865 *Feld* + *Cpx* + *Ti-Mag. b) trachyte, with overall similar mineralogy. Note the orange*
- 866 iddingsitisation of the olivine. Feldspar microphenocrysts and groundmass crystals show
- 867 good alignment. c) and d) phonolite exhibiting identical mineral assemblage of trachyte in b)
- 868 *but have diktytaxitic texture and contain sieve-textured anothoclase glomerocrysts (d). e)*
- 869 Backscatter Electron (BSE) image of the benmoreite. Note the high degree of vesicularity and
- 870 *lack of major zonation in the clinopyroxene. f)* BSE image of feldspar (anorthoclase)
- 871 glomerocryst in the phonolite. Note the lack of zonation in the individual crystals.
- 872
- 873 *Figure 4. Compositions of natural and experimental clinopyroxene crystals.*
- 874
- 875 *Figure 5. Composition of natural and experimental feldspars.*
- 876
- 877 Figure 6. BSE (backscattered electron) images of selected experimental products. a), b) and
- 878 *c)* are from Experimental Set A, and d), *e*), and f) are from Experimental Set B.
- 879
- 880 *Figure 7. a)* Relationship between degree of crystallization and experimental temperature
- and added H₂O in 200 and 500 MPa experiments. Experiments with CO₂ only are considered
- anhydrous. b) Variation of feldspar/clinopyroxene modal ratio with experimental
- temperature and added H_2O in 200 MPa experiments.
- 884
- Figure 8. Experimental glass compositions obtained by using the benmoreite (A) as starting
- 886 composition. Star symbols represent the whole rock composition of natural samples. A and B
- 887 *indicate the starting materials for the two experimental sets.*
- 888

- 889 *Figure 9. Experimental glass compositions obtained by using the trachyte (B) as starting*
- 890 material. Star symbols represent the whole rock composition of natural samples. A and B
- 891 *indicate the starting materials for the two experimental sets.*
- 892
- 893 Figure 10. Evolution of peralkalinity and sodicity (Thompson and MacKenzie, 1967) of the
- 894 *experimental glasses and natural whole rock samples from Al Shaatha. Symbols as in*
- 895 *Figures 8 and 9.*
- 896
- 897 Figure 11. Schematic illustration (not to scale) of the proposed scenario for the formation of
- 898 phonolite erupted at Al Shaatha. An initial stalled intrusion crystallizes extensively to form a
- 899 anorthoclase-dominated crystal mush with interstitial phonolitic melt. A subsequent injection
- 900 from the deeper plumbing remobilizes and interacts with the crystal mush, resorbs some
- 901 *anorthoclase and entrains the interstitial melt.*
- 902

903 Table captions

- Table 1. Whole rock major element abundances of tephras erupted at Al Shaatha. Sample
- 905 SH1A is the starting material for Experimental Set A and sample SH5C is starting material
- 906 for Experimental Set B. SD EPMA is the standard deviation of microprobe analyses (n = 10)
- 907 of the starting glass for the two experiments (SMA and SMB).

908

909 Table 2. Experimental conditions

910

911 Table 3. Least squares crystal fractionation modeling of Al Shaatha products.

	SH1A (A)	SMA SD EPMA	SH2B	SH4A	SH4B	SH4C	SH5B
SiO ₂	58.83	1.24	60.22	60.77	60.44	59.40	61.61
TiO ₂	0.60	0.10	0.47	0.36	0.40	0.57	0.28
Al_2O_3	16.65	0.54	16.96	17.30	17.02	16.87	17.61
FeO _{tot}	8.32	0.48	7.64	7.18	7.47	8.31	6.39
MnO	0.26	0.06	0.25	0.24	0.25	0.26	0.22
MgO	0.60	0.74	0.48	0.37	0.30	0.57	0.33
CaO	4.03	0.13	2.95	2.41	2.46	2.89	1.84
Na ₂ O	6.49	0.17	6.64	6.43	6.90	6.90	6.41
K ₂ O	3.94	0.17	4.18	4.80	4.60	3.95	5.20
P_2O_5	0.30	0.03	0.21	0.14	0.16	0.28	0.10
Tot _{anhydrous}	100.00		100.00	100.00	100.00	100.00	100.00
H_2O	0.63		0.43	0.62	0.09	0.03	0.58
LOI	0.87		0.65	0.86	0.47	0.09	1.18
	SH5C (B)	SMB SD EPMA	SH5D	SH5E	SH5F	SH5I	SH5J
SiO ₂	SH5C (B) 61.88	SMB SD EPMA 0.92	SH5D 60.90	SH5E 59.97	SH5F 60.78	SH5I 59.93	SH5J 59.27
SiO ₂ TiO ₂	SH5C (B) 61.88 0.26	SMB SD EPMA 0.92 0.03	SH5D 60.90 0.26	SH5E 59.97 0.28	SH5F 60.78 0.33	SH5I 59.93 0.44	SH5J 59.27 0.59
SiO ₂ TiO ₂ Al ₂ O ₃	SH5C (B) 61.88 0.26 17.51	SMB SD EPMA 0.92 0.03 0.22	SH5D 60.90 0.26 17.15	SH5E 59.97 0.28 16.99	SH5F 60.78 0.33 17.21	SH51 59.93 0.44 17.09	SH5J 59.27 0.59 17.07
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot}	SH5C (B) 61.88 0.26 17.51 6.32	SMB SD EPMA 0.92 0.03 0.22 0.17	SH5D 60.90 0.26 17.15 6.19	SH5E 59.97 0.28 16.99 6.24	SH5F 60.78 0.33 17.21 6.86	SH5I 59.93 0.44 17.09 7.93	SH5J 59.27 0.59 17.07 8.48
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot} MnO	SH5C (B) 61.88 0.26 17.51 6.32 0.22	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04	SH5D 60.90 0.26 17.15 6.19 0.22	SH5E 59.97 0.28 16.99 6.24 0.22	SH5F 60.78 0.33 17.21 6.86 0.24	SH5I 59.93 0.44 17.09 7.93 0.26	SH5J 59.27 0.59 17.07 8.48 0.27
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot} MnO MgO	SH5C (B) 61.88 0.26 17.51 6.32 0.22 0.21	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04 0.03	SH5D 60.90 0.26 17.15 6.19 0.22 0.19	SH5E 59.97 0.28 16.99 6.24 0.22 0.13	SH5F 60.78 0.33 17.21 6.86 0.24 0.28	SH5I 59.93 0.44 17.09 7.93 0.26 0.45	SH5J 59.27 0.59 17.07 8.48 0.27 0.55
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot} MnO MgO CaO	SH5C (B) 61.88 0.26 17.51 6.32 0.22 0.21 1.60	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04 0.03 0.03	SH5D 60.90 0.26 17.15 6.19 0.22 0.19 1.69	SH5E 59.97 0.28 16.99 6.24 0.22 0.13 1.80	SH5F 60.78 0.33 17.21 6.86 0.24 0.28 2.71	SH5I 59.93 0.44 17.09 7.93 0.26 0.45 2.50	SH5J 59.27 0.59 17.07 8.48 0.27 0.55 2.93
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot} MnO MgO CaO Na ₂ O	SH5C (B) 61.88 0.26 17.51 6.32 0.22 0.21 1.60 6.65	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04 0.03 0.17	SH5D 60.90 0.26 17.15 6.19 0.22 0.19 1.69 8.29	SH5E 59.97 0.28 16.99 6.24 0.22 0.13 1.80 9.43	SH5F 60.78 0.33 17.21 6.86 0.24 0.28 2.71 6.57	SH5I 59.93 0.44 17.09 7.93 0.26 0.45 2.50 6.79	SH5J 59.27 0.59 17.07 8.48 0.27 0.55 2.93 6.55
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot} MnO MgO CaO Na ₂ O K ₂ O	SH5C (B) 61.88 0.26 17.51 6.32 0.22 0.21 1.60 6.65 5.26	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04 0.03 0.04 0.03 0.04 0.05	SH5D 60.90 0.26 17.15 6.19 0.22 0.19 1.69 8.29 5.03	SH5E 59.97 0.28 16.99 6.24 0.22 0.13 1.80 9.43 4.84	SH5F 60.78 0.33 17.21 6.86 0.24 0.28 2.71 6.57 4.89	SH5I 59.93 0.44 17.09 7.93 0.26 0.45 2.50 6.79 4.40	SH5J 59.27 0.59 17.07 8.48 0.27 0.55 2.93 6.55 4.00
$\begin{array}{c} SiO_2\\TiO_2\\Al_2O_3\\FeO_{tot}\\MnO\\MgO\\CaO\\Na_2O\\K_2O\\P_2O_5\end{array}$	SH5C (B) 61.88 0.26 17.51 6.32 0.22 0.21 1.60 6.65 5.26 0.10	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04 0.03 0.04 0.14 0.05 0.04	SH5D 60.90 0.26 17.15 6.19 0.22 0.19 1.69 8.29 5.03 0.10	SH5E 59.97 0.28 16.99 6.24 0.22 0.13 1.80 9.43 4.84 0.10	SH5F 60.78 0.33 17.21 6.86 0.24 0.28 2.71 6.57 4.89 0.14	SH5I 59.93 0.44 17.09 7.93 0.26 0.45 2.50 6.79 4.40 0.21	SH5J 59.27 0.59 17.07 8.48 0.27 0.55 2.93 6.55 4.00 0.30
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot} MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Tot _{anhydrous}	SH5C (B) 61.88 0.26 17.51 6.32 0.22 0.21 1.60 6.65 5.26 0.10 100.00	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04 0.03 0.04 0.05 0.04	SH5D 60.90 0.26 17.15 6.19 0.22 0.19 1.69 8.29 5.03 0.10 100.00	SH5E 59.97 0.28 16.99 6.24 0.22 0.13 1.80 9.43 4.84 0.10 100.00	SH5F 60.78 0.33 17.21 6.86 0.24 0.28 2.71 6.57 4.89 0.14 100.00	SH5I 59.93 0.44 17.09 7.93 0.26 0.45 2.50 6.79 4.40 0.21 100.00	SH5J 59.27 0.59 17.07 8.48 0.27 0.55 2.93 6.55 4.00 0.30 100.00
SiO ₂ TiO ₂ Al ₂ O ₃ FeO _{tot} MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Tot _{anhydrous} H ₂ O	SH5C (B) 61.88 0.26 17.51 6.32 0.21 1.60 6.65 5.26 0.10 100.00 0.60	SMB SD EPMA 0.92 0.03 0.22 0.17 0.04 0.03 0.06 0.14 0.05 0.04	SH5D 60.90 0.26 17.15 6.19 0.22 0.19 1.69 8.29 5.03 0.10 100.00 1.26	SH5E 59.97 0.28 16.99 6.24 0.22 0.13 1.80 9.43 4.84 0.10 100.00 0.47	SH5F 60.78 0.33 17.21 6.86 0.24 0.28 2.71 6.57 4.89 0.14 100.00 0.47	SH5I 59.93 0.44 17.09 7.93 0.26 0.45 2.50 6.79 4.40 0.21 100.00 0.30	SH5J 59.27 0.59 17.07 8.48 0.27 0.55 2.93 6.55 4.00 0.30 100.00 0.42

Table 1. Whole-rock major element abundances of tephras erupted at Al Shaatha. Sample SH1A is the starting material for Experimental Set A and sample SH5C is starting material for Experimental Set B. SD EPMA is the standard deviation of microprobe analyses (n = 10) of the starting glass for the two experiments (SMA and SMB).

Experiment	T (°C)	P (MPa)	H ₂ O added (wt.%)	CO ₂ added (wt.%)	Duration (h)	Phase assemblage and modal proportions (%)	
Experiments	Experiments with benmoreite (A) starting composition						
A14	1,150	500	0.0	0.0	24	Gl (98) + Cpx (<1) + Ti-Mag (1)	
A23	1,050	500	0.0	0.0	70	Gl (60) + Feld (34) + Cpx (3) + Ti-Mag (3)	
A26	1,050	500	0.0	0.27	70	Gl (63) + Feld (29) + Cpx (5) + Ti-Mag (3)	
A10	1,000	200	4.0	0.0	24	Gl (98) + Cpx (<1) + Ti-Mag (2)	
A3	1,000	200	0.0	0.0	24	Gl (22) + Feld (71) + Cpx (4) + Ti-Mag (3)	
A4	900	200	0.0	0.0	70	Gl (25) + Feld (65) + Cpx (7) + Ti-Mag (3)	
A5	900	200	0.0	0.0	24	Gl (35) + Feld (58) + Cpx (5) + Ti-Mag (2)	
A15	900	200	4.0	0.0	24	Gl (53) + Feld (40) + Cpx (3) + Ti-Mag (3)	
A25	850	500	10.1	0.0	12	Gl (92) + Cpx (4) + Ti-Mag (4)	
A22	850	500	0.0	0.25	12	Gl (37) + Feld (55) + Cpx (5) + Ti-Mag (3)	
A20	850	200	0.0	0.5	25	Gl (2) + Feld (86) + Cpx (8) + Ti-Mag (3)	
A21	850	200	7.7	0.0	25	Gl (<1) + Feld (88) + Cpx (10) + Ti-Mag (2)	
Experiments	with trac	chyte (B)	starting c	ompositic	on		
B10	1,000	500	0.0	0.0	44	Gl (66) + Feld (32) + Cpx (<1) + Ti-Mag (2)	
B11	1,000	500	0.0	0.0	44	Gl (69) + Feld (28) + Cpx (1) + Ti-Mag (2)	
B5	1,000	200	0.0	0.0	50	Gl (38) + Feld (60) + Cpx (1) + Ti-Mag (2)	
B6	1,000	200	0.0	0.31	50	Gl (48) + Feld (49) + Cpx (<1) + Ti-Mag (2)	
B12	950	500	7.1	0.0	44	Gl (100)	
B13	950	500	0.0	0.0	44	Gl (97) + Ti-Mag (3)	
B1	950	500	0.0	0.0	24	Gl (98) + Ti-Mag (2)	
B1b	950	200	5.1	0.0	24	Gl (97) + Ti-Mag (3)	
B2	950	200	0.0	0.0	24	Gl (27) + Feld (70) + Cpx (1) + Ti-Mag (2)	
B9	900	500	5.1	0.0	48	Gl (99) + Ti-Mag (1)	
B3	900	200	5.1	0.0	24	Gl (67) + Feld (30) + Cpx (1) + Ti-Mag (2)	
B4	900	200	0.0	0.0	24	Gl (7) + Feld (90) + Cpx (2) + Ti-Mag (1)	
B8	850	200	0.0	0.0	70	Gl (4) + Feld (92) + Cpx (2) + Ti-Mag (2)	
B7	850	200	4.6	0.0	70	Gl (12) + Feld (84) + Cpx (2) + Ti-Mag (2)	

Table 2. Experimental conditions

	Initial	Final	Feldspar SH5E_ feldpsar	Pyroxene	Oxide	Observed		
	melt <i>SH5C</i>	melt <i>SH5E</i>	glomero 14	SH5E_ mafic 2	SH5C_oxid e gdm 3	differenc e	Calculated difference	Obs-Calc residuals
SiO ₂	61.88	59.97	65.99	48.56	0.95	-1.90	-1.56	-0.35
TiO ₂	0.26	0.28	0.05	0.35	1.11	0.02	0.13	-0.12
Al_2O_3	17.51	16.99	19.85	1.79	0.60	-0.52	-0.72	0.20
FeO _{tot}	6.32	6.24	0.21	24.19	95.92	-0.07	0.09	-0.17
MnO	0.22	0.22	0.00	1.02	0.64	0.00	0.10	-0.11
MgO	0.21	0.13	0.01	2.87	0.16	-0.08	-0.04	-0.04
CaO	1.60	1.80	0.74	20.1	0.04	0.20	-0.03	0.23
Na ₂ O	6.65	9.43	6.57	1.10	0.47	2.79	2.79	0.00
K ₂ O	5.26	4.84	6.56	0.01	0.11	-0.43	-0.84	0.41
P_2O_5	0.10	0.10	0.01	0.00	0.00	0.00	0.07	-0.07
Total	100.00	100.00	100.00	100.00	100.00			
							SSR =	0.44
Fractiona	ted amount		71.97	4.69	3.80			
% of rem	oved		89.45	5.83	4.72			

Table 3. Least squares crystal fractionation modeling of Al Shaatha products.

Figure 1

Figure 2

Figure 3 trachyte a) benmoreite b) Ves 0 Feld P Срх Ti-Mag Feld O C O, Ves Срх Ti-Mag mm c) phonolite d) phonolite Ves Ti-Mag Glomerocryst Срх Feld e) benmoreite

	A (benr	noreite)	B (trachyte)		
Natural samples	n		\sim		
A starting material	d	ry	+ H ₂ O or CO ₂		
Pressure (MPa)	500	200	500	200	
≤950 °C					
≥1000°C	•	•	0		
B starting material	d	ry	+ H ₂ O	or CO ₂	
Pressure (MPa)	500	200	500	200	
≤950 °C				۰	
≥1000°C	•	0			

A starting material	d	ry	$+ H_2O$	or CO ₂
Pressure (MPa)	500	200	500	200
≤950 <i>°</i> C				
≥1000°C	•		0	

B starting material	d	ry	$+ H_2O$	or CO ₂
Pressure (MPa)	500	200	500	200
≤950 °C				۰
≥1000°C	•	•		0

Figure 7

Figure 10 Experimental set A

Experimental set B

plumbing