	Neither antigorite nor its dehydration is "metastable"
	Revision 3 (20/02/2019)
	Thomas P. Ferrand ¹
	1: Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
	ferrand@eri.u-tokyo.ac.jp
(keep metadata here for editorial office)
ļ	Keywords: Antigorite, serpentine, metastability, dehydration, dehydroxylation, earthquake,
	DDST, dehydration-induced seismicity, subduction.
	At confining pressures up to 6 GPa (200 km depth), antigorite is the most abundant
	hydrous phase in the mantle between 300 and 700 $^\circ$ C (Wunder and Schreyer 1997). Therefore
1	the dehydration of antigorite has been studied for decades as it is considered as the mos
k	probable trigger of earthquakes in the mantle of subducting slabs (10 to 40 km below the
	subduction interface; e.g. Peacock 2001; Hacker et al. 2003; Abers et al. 2013).
	Liu et al. (2019) studied the kinetics of antigorite dehydration at 1 atm using non-
i	isothermal thermogravimetric analysis, which allowed determination of activation energy
١	variations as the reaction progresses (e.g. Trittschack et al. 2014; Wang et al. 2015). The result
	show that the dehydration consists of two dehydroxylation steps (Fig. 1), as is consistent with
I	high-pressure experiments (Chollet et al. 2011). First, a slow dehydroxylation process breaks
	low-energy OH bonds; then, high-energy OH bonds are quickly broken, leading to complete
	antigorite breakdown. Similar experiments on chrysotile (Trittschack et al. 2014) and lizardite
	(Zhou et al. 2017) have also indicated multi-step reaction scenarios.
	Liu et al. (2019) confirm the fast antigorite breakdown — a key factor for seismicity
	Sudden stress transfers are likely to occur in the vicinity of dehydrating serpentinized faults, as
	recently demonstrated using laboratory analogues (Ferrand et al. 2017). The latter study, along
	with seismological observations (Cai et al., 2018; Bloch et al., 2018; Kita, and Ferrand, 2018
	indicate that the lower Wadati-Benioff plane of the double-seismic structure does not
	correspond to the dehydration limit of antigorite, but rather to the hydration limit of the

oceanic mantle (Fig. 2). Furthermore, dehydration-induced earthquakes have been
 demonstrated experimentally for both > 0 and < 0 volume changes, which suggests that the
 earthquakes are triggered by dehydration itself while the resulted fluids are only a secondary
 factor.

35 Under subduction conditions, antigorite dehydration is not "seismic" (Chernak and 36 Hirth 2010, 2011; Okazaki and Hirth 2016; Gasc et al. 2011). When a ratio of heating rate to 37 strain rate typical for real slabs (100 - 10,000 K) is applied, antigorite-olivine mixtures undergo seismic events (Ferrand et al. 2017). Most likely, a dehydration-driven stress transfer triggers 38 39 the earthquakes in fresh peridotite at the tip of dehydrating faults (Dehydration-Driven Stress 40 Transfer model; Ferrand et al. 2017) whereas ductile deformation is dominant in serpentinites, 41 as supported by experiments (Chernak and Hirth 2011; Gasc et al. 2011) and field observations 42 (Scambelluri et al. 2017; Plümper et al. 2017).

43 Antigorite "metastability" was invoked to explain why its dehydration curve does not 44 fully fit the lower plane of the double-seismic structure (Fig. 2; e.g. Peacock 2001). Part of this 45 seismicity cannot be explained by antigorite dehydration (e.g. Abers et al. 2013), even considering various compositions and environments (Ferrand 2019). However, some 46 47 experimental work demonstrated that, at pressures between 1 and 6 GPa (35 to 200 km), antigorite dehydrates quickly in the stability field of Fo + En + H₂O (above 600 to 700 °C), which 48 49 suggests that subducting slabs do not contain "metastable" antigorite (Inoue et al. 2009; 50 Ferrand et al. 2017).

In the MgO-SiO₂-H₂O system, antigorite has 12 ideal discrete compositions depending 51 52 on P and T (Wunder et al. 2001), which makes it an atypical serpentine variety. Additional chemical variability (e.g. the FeO-Fe₂O₃-MgO-Al₂O₃-SiO₂-H₂O system) is taken into account by 53 the general formula $M_{3m-3}T_{2m}O_{5m}(OH)_{4m-6}$ (Kunze 1961) where M and T are the octahedral 54 $(Mg^{2+}, Fe^{2+}, Ni^{2+}, Al^{3+})$ and tetrahedral $(Si^{4+}, Al^{3+}, Fe^{3+})$ cationic sites, respectively, and *m* is the 55 56 wavelength, i.e. the number of tetrahedra in a single chain along the a-axis. For natural antigorite, m = [13;24], which corresponds to $\approx 12.5 > C_{H20} > \approx 12$ wt.% (Mellini et al., 1987). In 57 58 other words, each polysomatic reaction (reduction of m with increasing T or decreasing P; 59 Wunder et al. 2001) is a minor dehydration reaction.

60 Antigorite stability is known to depend on H_2O saturation (e.g. Perrillat et al. 2005; 61 Hilairet et al. 2006). Perrillat et al. (2005) showed that a "talc-like" phase (5-13 wt.% H_2O) 62 forms along with olivine at H_2O -unsaturated conditions, whereas antigorite remains stable 63 under H₂O saturation. The stability limit gradually shifts toward higher temperatures with 64 increasing H₂O activity, with a maximum at the point of saturation (Perrillat et al. 2005). In 65 addition, polysomatism is expected to release up to 4% of the H₂O content of antigorite 66 (Wunder et al. 2001). The progressive H₂O loss stabilizes antigorite and is easily 67 accommodated by further hydration reactions, which enhances serpentinization between the 68 planes (Fig. 2) and forms other hydrous phases that are stable at high P-T conditions.

69 A mineral is metastable when it persists for an unbounded time outside of its stability 70 field. The kinetics of a metamorphic reaction depends on the presence of a fluid phase, which 71 promotes the mobility of atoms within a rock volume (e.g. Rubie 1990). Thus, the absence of 72 fluid favors metastability. But for dehydration reactions, this kinetic effect is in competition 73 with H₂O saturation. Indeed, H₂O stabilizes antigorite (Perrillat et al. 2005). Apparent 74 "metastability" in transforming serpentinites at subduction conditions could actually be due to 75 fluid circulations within serpentinized faults, allowing ions mobility between different regions 76 of the serpentinized zone. Fluid percolation and repeated circulation events may allow some 77 reaction products to migrate, as a supercritical fluid, up to the subduction channel. In other 78 words, the uncertainty over local variations of mantle composition and connectivity of 79 potential fluid pathways may be mistaken for "metastability". The latter may also refer to the 80 difference in the stability limit in the P-T diagram between nominally pure phases and natural 81 minerals with variable compositions (Ferrand 2019).

82 Stability limits and dehydration processes differ between serpentine varieties (Fig. 1). 83 At atmospheric pressure, lizardite undergoes dehydroxylation between 550 and 625 °C 84 (Trittschack and Grobéty 2013; Zhou et al. 2017), with a minimum activation energy of \approx 220 kJ·mol⁻¹. Chrysotile exhibits a progressive dehydration between 500 and 650 °C, where 85 the dehydroxylation temperature depends on the nanotube diameter and is higher in the 86 87 innermost layers compared to the less curved outer parts of the chrysotile fibres. Its activation energies range from 240 to 300 kJ·mol⁻¹. For antigorite (m = 17), Liu et al. (2019) show that its 88 dehydroxylation occurs over a wide temperature range, from ≈450 to ≈775°C, followed by a 89 sharp breakdown step with a higher activation energy ($\approx 300 \text{ kJ} \cdot \text{mol}^{-1}$). At high pressures, these 90 values are expected to change, but the two-step mechanism should remain. 91

92 Under unsaturated conditions, talc-like phases form during the dehydration of
93 antigorite (Perrillat et al. 2005), chrysotile (Trittschack et al. 2014) and lizardite (Gualtieri et al.
94 2012). The progressive fragmentation of silicate sheets enables a transition from directional to

3D mobility of H₂O through the structure of dehydrated serpentine minerals. Eventually, talclike phases dehydroxylate during the last stage of chrysotile dehydration (Trittschack and
Grobéty 2013), similar to that observed in the high-P experiments on antigorite (Perrillat et al.
2005).

99 The structure of antigorite contains connected nanopores enabling water flow (Tutolo 100 et al. 2016; Schwarzenbach 2016), which helps deep mantle hydration near oceanic ridges (e.g. 101 Dunn et al. 2018) or at trenches (Cai et al. 2018; Shillington 2018). These pathways may also 102 facilitate H₂O redistribution within the subducting slab. Antigorite-rich rocks may, depending 103 on antigorite connectivity, drain dehydration fluids from the lower plane through the interior 104 of the double-seismic zone (Fig. 2).

Dehydrating antigorite forms anastomozed channels within serpentinites (Plümper et al. 2017), which consist of a mixture of olivine, talc-like and disordered serpentine. It is unclear whether the permeability of dehydrating antigorite would be higher or lower than the permeability of original antigorite itself. Thus, additional work is needed to understand how the sudden dehydration documented by Liu et al. (2019) could trigger or inhibit further dehydration.

Dehydration fluids transiently exist along the lower plane, as recently revealed by the high V_P/V_S ratio beneath northern Chile (Bloch et al. 2018). Supercritical H₂O rapidly diffuses as defects within olivine (Bai and Kohlstedt 1992), which may explain why the dehydration fluids are only seen near the lower plane. The sudden dehydration would promote the production of such abnormally deep fluid H₂O.

116 The study of Liu et al. (2019) confirms that antigorite dehydration is fast enough to 117 trigger brittle failure under subduction conditions (Perrillat et al. 2005; Chollet et al. 2011; 118 Ferrand et al. 2017; Inoue et al. 2009). This is also the case for other hydrous phases, e.g. talc 119 and 10-Å phase (Chollet et al. 2009). Dehydration reactions of single phases are typically fast. 120 Such transformations produce extremely fine mineral aggregates, are prone to initiate strain 121 localization by thermal runaway (e.g. Thielmann 2017), and promote critical stress transfers 122 triggering mechanical instabilities (Ferrand 2017). The stability limit of antigorite depends on 123 chemistry, fluid mobility and saturation conditions. Finally, as antigorite is not "metastable" 124 under subduction conditions, if some of the seismicity does not correlate with antigorite dehydration, the decomposition of other hydrous or carbonated phases needs to be 125 126 considered (Ferrand 2019).

- 127 Through this experimental work, Liu et al. (2019) also recall the relevance of 1-atm 128 experiments and their non-isothermal TGA provides insight as to how an antigorite crystal
- destabilizes, answering a question that high-pressure experiments could not fully address.

130

Figure 1. The dehydroxylation mechanism of serpentine minerals. Chrysotile, lizardite and
 antigorite have different structures, which control their stability limits and dehydration kinetics.

133 Arrows indicate the expected limits of existence of talc-like on the activation energy curves.

134

Figure 2. Antigorite dehydration and double seismic zone. Stars represent earthquakes, red
 for the lower Wadati-Benioff plane and white for other earthquakes. Dark green corresponds
 to high serpentinization near faults and in the mantle wedge.

138

139 References

- 1401.Abers, G.A., Nakajima, J., van Keken, P.E., Kita, S., and Hacker, B.R. (2013) Thermal-petrological141controls on the location of earthquakes within subducting plates. Earth and Planetary Science142Letters, 369, 178-187.
- Bai, Q., and Kohlstedt, D. L. (1992) Substantial hydrogen solubility in olivine and implications for
 water storage in the mantle. Nature, 357(6380), 672.
- Bloch, W., John, T., Kummerow, J., Salazar, P., Krüger, O. S., and Shapiro, S. A. (2018) Watching
 Dehydration: Seismic Indication for Transient Fluid Pathways in the Oceanic Mantle of the
 Subducting Nazca Slab. Geochemistry, Geophysics, Geosystems, 19(9), 3189-3207.
- 1484. Cai, C., Wiens, D.A., Shen, W., and Eimer , M. (2018) Water input into the Mariana subduction149zone estimated from ocean-bottom seismic data. Nature, 563, 389-392.
- 1505.Chernak, L., and Hirth G. (2010) Deformation of antigorite serpentinite at high temperature and151pressure. Earth and Planetary Science Letters, 296 (1-2), 23-33.
- Chernak, L., and Hirth G. (2011) Syndeformational antigorite dehydration produces stable fault
 slip. Geology, 39 (9), 847-850.
- Dunn, R.A., Arai, R., Eason, D.E., Canales, J.P., and Sohn, R.A. (2017) Three-Dimensional Seismic
 Structure of the Mid-Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal
 Processes in the Rainbow Area. Journal of Geophysical Research: Solid Earth, 122, (12), 9580 9602.
- Ferrand, T.P., Hilairet, N., Incel, S., Deldicque, D., Labrousse, L., Gasc, J., ..., and Schubnel, A.
 (2017) Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature
 Communications, 8.

161 162	9.	Ferrand, T.P. (2019) Seismicity and mineral destabilizations in the subducting mantle up to 6 GPa, 200 km depth. Lithos.
163 164	10.	Gasc, J., Schubnel, A., Brunet, F., Guillon, S., Mueller, H., and Lathe, C. (2011) Simultaneous acoustic emissions monitoring and synchrotron X-ray diffraction at high pressure and
165 166		temperature: Calibration and application to serpentinite dehydration. Physics of Earth and Planetary Interiors, 189, 121-133
167	11.	Gualtieri, A. F., Giacobbe, C.,, and Viti, C. (2012) The dehydroxylation of serpentine group
160	12	Kita S and Ferrand T.P. (2018) Physical mechanisms of oceanic mantle earthquakes:
170	12.	Comparison of natural and experimental events. Scientific Reports, 8, 17049.
171	13.	Hacker, B.R., Peacock, S.M., and Abers, G.A. (2003) Subduction factory: 2. Intermediate-depth
172		earthquakes in subducting slabs are linked to metamorphic dehydration reactions. Journal of
173		Geophysical Research: Solid Earth, 108.
174	14.	Inoue, T., Yoshimi, I., Yamada, A., and Kikegawa, T. (2009) Time-resolved X-ray diffraction
175		analysis of the experimental dehydration of serpentine at high pressure. Journal of
176		Mineralogical and Petrological Sciences, 104(2), 105-109.
177	15.	Liu, T., Wang, D., Shen, K., Liu, C., and Yi, L. (2019) Kinetics of antigorite dehydration, American
178		Mineralogist.
179	16.	Chollet, M., Daniel, I., Koga, K. T., Petitgirard, S., and Morard, G. (2009) Dehydration kinetics of
180		talc and 10 Å phase: Consequences for subduction zone seismicity. Earth and Planetary Science
181		Letters, 284(1-2), 57-64.
182	17.	Chollet, M., Daniel, I., Koga, K. T., Morard, G., and van de Moortèle, B. (2011) Kinetics and
183		mechanism of antigorite dehydration: Implications for subduction zone seismicity. Journal of
184		Geophysical Research: Solid Earth, 116, 1-9.
185	18.	Kunze, G. (1961) Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für
186		die weitere Serpentin-Forschung. Fortschritte in Mineralogie, 9, 206-324.
187	19.	Mellini, M., Trommsdorff, V., Compagnoni, R. (1987) Antigorite polysomatism: behaviour
188		during progressive metamorphism. Contributions to Mineralogy and Petrology, 97, 147-155.
189	20.	Perrillat, JP., Daniel, I., Koga, K.T., Reynard, B., Cardon, H., and Crichton W. A. (2005) Kinetics
190		of antigorite dehydration; a real-time X-ray diffraction study. Earth and Planetary Science
191	24	Letters, 236, 899-913.
192	21.	Hilairet, N., Daniel, I., and Reynard, B. (2006) Equation of state of antigorite, stability field of
193		Serpentines, and seismicity in subduction zones. Geophysical Research Letters, 33(2).
194	22.	okazaki, K., and Hirth, G. 2016. Denydration of lawsonite could directly trigger eartiquakes in subdusting occorrigority. Nature, 520(7599), 81
195	22	Subducting oceanic crust. Nature, 530(7588), 81.
190	25.	escane from subduction zones controlled by channel forming reactive peresity Nature
197 108		Geoscience 10(2) 150
100	24	Descerk $S_{10}(2)$, 150.
200	24.	dehydration in subducting oceanic mantle? Geology 29(4) 299-302
200	25	Rubie D C (1990) Role of kinetics in the formation and preservation of eclogites Eclogite
201	25.	facies rocks 111-140
202	26	Scamballuri M. Dannaschioni C. Cilio M. Postmann M. Dlümnar O. and Nostala E. (2017)
203	20.	Eastil intermediate depth earthquakes in subducting slabs linked to differential stress release
204 205		Nature Geoscience, 10, 960-96
205	27	Schwarzenhach E M (2016) RESEARCH EOCUS: Sementinization and the formation of fluid
200	27.	nothways Coology (4(2) 175 176
207	20	pathways. Geology, 44(2), 1/3-1/0.
208	28.	Snillington, D. J. (2018) water takes a deep dive into the Mariana Trench. Nature, 563(7731),
209 210	20	333-330.
∠1U 211	29.	intermatin, IVI. (2017) Grain size assisted thermal runaway as a nucleation mechanism for continental mantle earthquakes: Impact of complex recelering. Tectonophysics, 746, 611, 622
ZII		נטוונוויבוונמו ווומוונופ פמונוועטמגפא ווווףמנו טו נטוווףופא ווופטוטצופא. ופננטווטףוויאאנא, 740, 111-023.

212	30.	Trittschack, R., and Grobéty, B. (2012) Dehydroxylation kinetics of lizardite. European Journal of
213		Mineralogy, 24(1), 47-57.
214	31.	Trittschack, R., and Grobéty, B. (2013) The dehydroxylation of chrysotile: A combined in situ
215		micro-Raman and micro-FTIR study. American mineralogist, 98(7), 1133-1145.
216	32.	Trittschack, R., Grobéty, B., and Brodard, P. (2014) Kinetics of the chrysotile and brucite
217		dehydroxylation reaction: a combined non-isothermal/isothermal thermogravimetric analysis
218		and high-temperature X-ray powder diffraction study. Physics and Chemistry of Minerals, 41(3),
219		197-214.
220	33.	Tutolo, B.M., Mildner, D.F.R., Gagnon, C.V.L., Saar, M.O., and Seyfried, W.E. (2016) Nanoscale
221		constraints on porosity generation and fluid flow during serpentinization: Geology, 44, 103-106.
222	34.	Wang, D., Yi, L., Huang, B., and Liu, C. (2015) High-temperature dehydration of talc: a kinetics
223		study using in situ X-ray powder diffraction. Phase Transitions, 88(6), 560-566.
224	35.	Wunder, B., and Schreyer, W. (1997) Antigorite: High pressure stability in the system MgO-SiO $_2$ -
225		H ₂ O (MSH). Lithos, 41, 213-227.
226	36.	Wunder, B., Wirth, R., and Gottschalk, M. (2001) Antigorite pressure and temperature
227		dependence of polysomatism and water content. European Journal of Mineralogy, 13(3), 485-
228		496.
229	37.	Zhou, S., Wei, Y., Li, B., Ma, B., Wang, C., and Wang, H. (2017). Kinetics study on the
230		dehydroxylation and phase transformation of Mg ₃ Si ₂ O ₅ (OH) ₄ . Journal of Alloys and Compounds,
231		713, 180-186.
232		