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ABSTRACT 11 
This paper presents a new x-ray absorption spectroscopy (XAS) method for making two-12 

dimensional maps of Fe3+ in situ in polished glass samples which opens the door to study redox 13 

changes associated with magmatic processes such as crystallization, assimilation, ascent, and 14 

eruption. Multivariate analysis (MVA) allows selection of specific channels in a spectrum to 15 

inform predictions of spectral characteristics. Here, the sparse model of the least absolute 16 

shrinkage and selection operator (Lasso) is used to select key channels in XAS channels that can 17 

be used to predict accurate in situ Fe3+ analyses of silicate glasses. By tuning the model to use 18 

only six channels, analytical time is decreased enough to allow mapping of Fe3+ variations in 19 

samples by making gridded point analyses at the scale of the XAS beam (1-2 µm). Maps of Fe3+ 20 

concentration can then be constructed using freely available, open source software 21 

(http://cars.uchicago.edu/xraylarch/). This result shows the enormous potential of using MVA to 22 

select indicative spectral regions for predicting variables of interest across a wide variety of 23 

spectroscopic applications. Redox gradients in lunar picritic glass beads first observed with point 24 

analyses are confirmed through this XAS mapping and suggest degassing processes during 25 

ascent and eruption are responsible for the range of Fe3+ values measured in these samples. 26 

INTRODUCTION 27 
Mössbauer reports of Fe3+ in lunar glasses and minerals extend back to the time of the 28 

Apollo missions themselves (e.g., Hafner et al., 1971; Schürmann and Hafner, 1972; Niebuhr et 29 

al., 1973). In contrast, petrologic phase equilibria data on returned samples indicate that the 30 

oxygen fugacity (fO2) of the lunar interior is ~IW-1, a reduced region near Fe metal saturation 31 

where iron should be predominantly divalent (Sato, 1976). This contradiction persisted for 32 

decades until new light was shed on this problem by recent studies (e.g., Saal et al., 2008; 33 

McCubbin et al., 2010; Hauri et al., 2011; Hui et al. 2013; Barnes et al. 2014; Füri et al. 2014; 34 

Hauri et al. 2015) indicating that the Moon is not as dry as previously thought. Given the 35 

potential relationship between hydrogen degassing and oxidation, this recent work re-opens the 36 

http://cars.uchicago.edu/xraylarch/
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question of the presence of Fe3+ in lunar glasses. Results of individual point analyses of lunar 37 

picritic glass beads indicate they contain 0-25% Fe3+/Fe (McCanta et al., 2017); several beads 38 

display Fe3+ zoning traverses consistent with a late-stage oxidation event. 39 

The presence of Fe3+ is significant because it records oxygen potential and thus traces the 40 

evolution of oxygen through the parameter of fO2 in solar system materials. Quantifying fO2 in 41 

igneous melts is important for constraining planetary interior physical conditions, but also for 42 

investigating potential changes during devolatilization-driven eruptive mechanisms. Historically, 43 

quantification of Fe3+ in glasses required either wet chemistry or Mössbauer spectroscopy (e.g., 44 

Cukierman and Uhlmann, 1974; Huffman et al., 1974; Dyar and Birnie, 1984; Virgo and Mysen, 45 

1985), techniques that require large sample sizes and bulk material. Here we present results of a 46 

synchrotron X-ray absorption spectroscopy (XAS) method (cf. Mayhew et al. 2011, Etschmann 47 

et al. 2014) for making two-dimensional maps of Fe3+ in situ, enabling resolution of potential 48 

variations at micron scales within the spatial context of coexisting phases. This technique is 49 

demonstrated using mapping of lunar glass beads, in which there are varying mechanisms for 50 

changing oxidation conditions during magma ascent and eruption.  51 

BACKGROUND 52 
In previous work, a glass calibration for XAS (Dyar et al., 2016a) was developed for Fe3+ 53 

measurements in silicate glasses, spanning >120 different silicate and redox compositions. It 54 

permits accurate in situ microscale analyses with an average accuracy of ±3.6 %, similar to that 55 

of Mössbauer, by employing a broad spectral range covering the Fe K absorption pre-edge and 56 

main edge (7020-7220 eV). This method remains the best method for in situ characterization at 57 

single point locations on glasses at thin section scales. 58 

However, the ‘Holy Grail’ of microanalysis is to make two-dimensional maps of Fe3+ on 59 

thin sections. Because acquiring the full spectral range (300-800 data points) at a single location 60 

is time-consuming (ca. 10 minutes), only linear traverses have previously been employed on 61 

limited locations, so relevant spatial information may be overlooked. Moreover, traditional 62 

methods for predicting Fe3+ concentration using XAS, such as those of Wilke et al. (2001) and 63 

Cottrell et al. (2009) utilize laborious manual fitting of pre-edge features, making them 64 

unrealistic for large numbers of spectra. However, it is undeniably desirable to coregister redox 65 

measurements with those of major and minor element concentrations, providing insights into 66 

charge balance and diffusion gradients. Therefore, an unbiased, objective method for obtaining 67 

redox measurements over two-dimensional arrays was needed to reduce the number of spectral 68 

channels and automate the data processing so as to make the duration of data collection practical.  69 

Earlier studies investigating Fe3+ in situ mapping utilized spectral information collected 70 

in the pre-edge region only (Mayhew et al., 2011) or required significant interpolation during 71 

data reduction procedures (Muñoz et al., 2006). The mapping method presented in this paper 72 

uses the entire XAS spectrum of each glass measured and the multivariate methods developed to 73 

deal with the large data volume. In developing the glass Fe3+ calibration of Dyar et al. (2016a), 74 

one of the models tested was the least absolute shrinkage and selection operator (Lasso) 75 

multivariate regression model (Tibshirani 1996; Lanzirotti et al., 2018). It is fundamentally based 76 

on the familiar expression for multiple linear regression, y = 0 + 1x1 + 2x2 +…+ nxn, where y 77 

is the weight percent of the oxide of the element being considered, and 0 and i are the 78 

regression coefficients for the intercept and each independent channel xi, respectively. In the 79 

XAS data studied here, there are many predictor variables, which are the input X values (i.e., the 80 

matrix of intensity values at each of ~600 channels representing energy) and relatively few 81 

samples (rows of the X matrix). Thus the data exist in a multi-dimensional space in which many 82 
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dimensions (wavelength bins) are highly correlated. For example, for any given element, the 83 

intensity of many lines will vary together, such as those that collectively make up a single peak. 84 

The Lasso regression shrinks this expression by reducing the number of terms implicitly, 85 

constraining the values of the correlation coefficients using the original data matrix X. The 86 

absolute value of the sum of the  values (correlation coefficients) is constrained by the user to 87 

be less than some boundary value t. Under this constraint, the model weighs the importance of 88 

each channel to the prediction and unimportant channels are driven to  values equal to 0 by an 89 

optimization process. Mathematically, this is expressed by Hastie et al. (2009) as:  90 

 �̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ |𝛽𝑗| ≤ 𝑡

𝑝
𝑗=1

𝑁
𝑖=1  (1) 91 

where �̂�𝐿𝑎𝑠𝑠𝑜 is the estimated coefficient in the regression equation, argmin is the value of the 92 

vector  that minimizes the squared loss function, yi is the composition of an individual sample, 93 

xij is intensity at a single channel j for a single sample i, and j is the coefficient corresponding to 94 

the channel j.  In our experience with spectroscopy applications (e.g., Dyar et al., 2012b; 95 

Breitenfeld et al., 2018), the Lasso often seems to yield superior results to other regression 96 

models because it removes channels due to noise or arising from unrelated spectral features; the 97 

same conclusion was reached for other machine learning applications where noise is a problem 98 

(Filzmoser et al., 2012). In the application to glass XAS data presented here, the Lasso is used to 99 

limit the number of channels to a small enough number to create a redox map in a reasonable 100 

acquisition time. 101 

ANALYTICAL METHODS 102 
Major and minor element concentrations in 32 lunar glass beads from Apollo 11 (10084), 103 

14 (14148), and 17 (74220) were analyzed on the Brown University and University of Tennessee 104 

Knoxville Cameca SX-100 electron probes. Glass analyses were obtained using a 15 kV 105 

acceleration voltage, 10 nA beam current, and a defocused 5–15 μm beam. A correction for 106 

sodium loss during analysis was made using the online correction scheme and method of Nielsen 107 

and Sigurdsson (1981). Natural mineral standards were used for calibration. 108 

XAS Fe3+ maps were collected at beamline 13-IDE (GSECARS) at the Advanced Photon 109 

Source at Argonne National Lab. 50×50 pixel grids were set up to cover each glass bead with 110 

point analyses, with one spot per location. The beam was focused using mutually-orthogonal 111 

Kirkpatrick-Baez mirrors to a 1×1 μm area. Incident beam energy was controlled by a water-112 

cooled (9° C) Si(311) channel-cut monochromator. Incident x-ray energy was calibrated on the 113 

first derivative peak of an iron metal foil standard (7110.75 eV, Kraft et al., 1996) and no energy 114 

drift was detected throughout the analytical session. XAS data were pre-processed using the 115 

ATHENA software package (Ravel and Newville, 2005). Data were normalized to the intensity 116 

at 7215 eV.  117 

To choose the channels for the maps, we began with subset of the training set used by 118 

Dyar et al. (2016b) to predict Fe3+, which contained ~510 channels and 303 spectra – samples 119 

from the original dataset with high alkaline contents were excluded due to their 120 

inappropriateness for lunar compositions. In the original paper, it was shown that partial least 121 

squares provides better accuracy than Lasso when using the entire spectrum. The statistical basis 122 

for comparison is cross-validated root mean square error, in which (in this case) the data set was 123 

randomly split into 100 sets, one set was held out while the other 99 were used to build a model, 124 

and then the samples in the 100th set were predicted. This is repeated 100 times, and the average 125 

error for all iterations is reported as RMSE-CV.  126 

In our limited dataset, RMSE-CV values of ±5.3% Fe3+ and an internal prediction error 127 

(RMSE) of ±4.4% Fe3+ were obtained for a 9-component model. This value is slightly different 128 
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than in the original Dyar et al. (2016a) paper due to the change in the number of samples, though 129 

it still suggests that highly accurate predictions can be universally made for silicate glasses. But 130 

those data were acquired at individual locations, requiring ~9 minutes per spectrum, or ~1.06 131 

seconds/channel. By comparison, a Lasso model built to predict %Fe3+ with those data and  = 132 

0.001 yields RMSE-CV = ±7.73% Fe3+ and RMSE = ±5.67% Fe3+ (is the hyperparameter that 133 

controls how many non-zero coefficients will be present). 134 

To create maps, we are willing to sacrifice accuracy in the interest of an ability to create 135 

visualizations of the redox distribution. Thus, to reduce the number of channels enough to collect 136 

maps in a reasonable amount of time, we retrained the Lasso model on the data explained above 137 

and tuned the t boundary value to reduce the number of channels needed for a prediction to a 138 

small enough value (four channels) to allow rapid data collection for a map. The resultant 139 

prediction expression is:  140 

%Fe3+ = 242.76 − (8.53×I7118.2) − (178.30×I7123.5) + (85.43×I7132.2) − (138.08×I7215)     (1)  141 

where Fe3+ is reported as the percentage of the total Fe. In addition, we collected two other data 142 

points at 7111.4 eV and 7113.7 eV to capture information in the pre-edge region for Fe2+ and 143 

Fe3+, respectively. These regression lines with their associated errors are shown in Figure 1. Use 144 

of this multivariate analytical technique makes it possible to “map” Fe3+ variations using a dense 145 

point array and reduces data collection time for a 50×50 pixel grid from 375 hours to ~4.4 hours. 146 

All multivariate models were trained from the XAS results using the open-source 147 

machine learning Python library Scikit-learn (Pedregosa et al., 2011) and the Superman website 148 

at http://nemo.cs.umass.edu:54321 (Carey et al., 2017). Methods generally follow those used in 149 

Dyar et al. (2012a, 2016a, b) and Lanzirotti et al. (2018). 150 

Maps were built using the GSE Mapviewer software created using the Python-based 151 

Larch open-source library toolkit for processing and analyzing X-ray spectroscopic and 152 

scattering data from synchrotrons (http://cars.uchicago.edu/xraylarch/). It allows visualization 153 

and analysis of micro-x-ray fluorescence maps. For each of the 32 glass beads analyzed, maps 154 

were created using two different metrics: 1) the Lasso expression given above and 2) the ratio of 155 

the peak intensity at 7111.4 eV to that at 7113.7 eV. 156 

RESULTS 157 
Thirty-two glass beads from three different Apollo sites were mapped for this study. 158 

These included orange, green, and yellow glasses, as well as both partially crystalline and 159 

holohyaline beads (see McCanta et al., 2017 for complete geochemical data). The glass beads 160 

exhibited no major element chemical zonation and Fe3+ concentrations were not observed to be 161 

correlated with any compositional variable studied (i.e., Mg#, TiO2 content) or with bead 162 

diameter. This study focuses on holohyaline beads to exclude any Fe3+/Fe2+ fractionation via 163 

mineral crystallization. 164 

As our earlier point analysis work suggested (McCanta et al., 2017), a majority of the 165 

mapped beads showed no evidence of Fe3+/Fe variations within the glass. However, five beads 166 

were observed to have measurable differences in Fe3+/Fe for both analytical metrics. These 167 

included zoning from reduced cores to oxidized rims and oxidized cores to reduced rims (Fig. 2). 168 

Glasses with Fe3+ zoning showed no concomitant chemical zoning in any other major element 169 

such as Mg, total Fe, or Ti and appear uniformly homogeneous (Figs. 2C,F,I).  170 

Several partially crystalline beads from sample 74220 were also mapped (Fig. 3). The 171 

lack of Fe3+ in the crystallizing phase, olivine, is expected due to crystal chemical controls. The 172 

surrounding glass pools appear enriched in Fe3+ in comparison to the olivine. Some zoning in 173 
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Fe3+ is observed within the melt pools with the highest Fe3+ concentrations appearing directly in 174 

contact with low Fe3+ olivine (Fig. 3). 175 

IMPLICATIONS 176 
Geologic: The occurrence of unzoned beads and beads with both oxidized and reduced 177 

rims observed in this study can best be explained by considering late-stage magma ascent and 178 

eruption conditions. A late-stage oxidation event (Stage 3 in Rutherford et al. (2017)), observed 179 

in Ni-rich rims on metal grains in the glass beads, likely results from loss of water from the 180 

ascending melt (Rutherford et al, 2017). This produces melt oxidation through the reaction: 4OH 181 

= H2O + H2 + 1.5O2 (Fig. 4). Redox kinetic calculations suggest that oxidation of a melt droplet 182 

(diameter = 100 µm) under these conditions takes place in under 1 s (McCanta et al., 2017). 183 

Although the unzoned beads have no Fe3+ variations, many do contain significant amounts of 184 

Fe3+ (up to 28% of total Fe) (McCanta et al., 2017) consistent with this oxidation event. 185 

Oxidation takes place from the rim inward. Therefore, zoned beads with oxidized rims represent 186 

incomplete oxidation prior to the closure temperature, i.e., the glass transition temperature. 187 

Zoned beads with reduced rims (Fig. 2) likely represent subsequent reduction either in the lunar 188 

vacuum or in the dissipating gas cloud that may have been modestly reducing due to the addition 189 

of H+ from the degassing melt (Fig. 4). This type of H2 loss due to H2O dissociation has long 190 

been considered the driver of observed oxidation profiles in terrestrial mid-ocean ridge pillow 191 

basalts (Christie et al., 1986; Lanzirotti et al., 2018). The increase in Fe3+ concentrations 192 

observed in MORB pillow basalts via this process (~50%) are similar to those in the lunar glass 193 

beads (~47%) with potentially similar pre-eruptive H2O contents (MORB: 80–950 ppm [e.g., Ito 194 

et al., 1983; Hirschmann, 2006]; lunar bead source: 260-1410 ppm [Saal et al., 2008; Hauri et al., 195 

2011]).  196 

The high and variable Fe3+ concentrations observed in glass pools in partially crystalline 197 

beads (Fig. 3) is likely controlled by olivine crystal chemistry. As Fe2+ is preferentially 198 

incorporated into the olivine structure (e.g., Canil et al., 1994), Fe3+ accumulates in the 199 

surrounding melt. Simple fractional crystallization models indicate that crystallization of 30-40% 200 

olivine from a melt containing 1% Fe3+ initially can raise the Fe3+ concentration of the remaining 201 

melt by up to 30%. The isolation of the glass pools from each other contributes to the wide range 202 

in Fe3+ concentrations measured in a single glass bead. 203 

Previous work on lunar glass bead redox was limited to point analyses (McCanta et al., 204 

2017). Although the point analyses were able to identify Fe3+ variations within the glass beads, 205 

the spatial distribution of these variations remained unknown. The ability to observe the 206 

distribution of Fe3+ throughout the entire glass bead opens new avenues of study into how far 207 

redox reaction fronts have processed (Fig. 2) and how crystallization affects melt composition in 208 

the near field (Fig. 3). 209 

Mapping of Fe
3+

 variations in situ: The larger implications of this study relate to the 210 

redox mapping presented. This study represents the first time that Fe3+ variations have been 211 

mapped in situ in polished glass samples. This is a huge step forward as it allows for spatial 212 

variations in redox gradients in melts to be observed and new geochemical questions to be 213 

studied.  214 

This technique is not without complexities. For example, results are dependent on how 215 

the data are normalized. This is particularly true for Fe, where concentrations are high so that 216 

detector saturation and self-absorption can lead to normalization differences that lead to spurious 217 

results. For this reason, the mapping technique can presently be considered at most a qualitative 218 
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tool to look for redox gradients; quantitative Fe3+ abundances can best be obtained through using 219 

more than a few channels in each spectrum. 220 

The multivariate techniques used in this study allow for Fe3+ mapping in silicate glasses 221 

because there is already an existing XAS glass calibration covering these compositions (Dyar et 222 

al., 2016a). XAS analyses of glasses are simpler than those of minerals due to their lack of 223 

crystalline structure-driven orientation effects (Dyar et al., 2016b), but we are working to 224 

develop calibrations for common liquidus phases in geologic systems. Calibrations of the type 225 

required for this type of multivariate analysis currently exist for both garnet (Dyar et al., 2012a) 226 

and amphibole (Dyar et al., 2016b) and are in progress for pyroxene (McCanta et al., 2018). 227 

With these datasets, mapping of Fe3+ variations at the microscale in common mineral phases is 228 

now feasible, and accurate in situ measurements of crystal glass partitioning of Fe3+ are soon to 229 

be feasible. This will allow for development of a better understanding of element fractionation, 230 

crystal site occupancy, and oxidation/reduction variations during common geologic processes. 231 
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 354 
Figure 1. (top) Spectra of 303 silicate glasses color-coded by %Fe3+ content as determined by 355 

Mössbauer spectroscopy, with locations and magnitudes of regression coefficients indicated in 356 

magenta.  (bottom) Comparison of predicted vs. Mössbauer %Fe3+ content for four-channel (left) 357 

and two-channel (right) models. The 1:1 line is shown with dashes and the regression fit line is 358 

dotted. RMSE-CV values (which are the magnitude of the y axis error bars), while not quite as 359 

small as those for the entire spectrum, still show useful values for mapping. Mössbauer error bars 360 

are ±1-3%Fe3+. 361 

 362 

363 



Revision 1 – 12/4/2018 
 

10 
 

 364 
Figure 2. Maps of Fe3+/Fe content in holohyaline lunar glass beads from Apollo samples 10084 365 

and 14148. (A-C) 10084,1623 bead 1. (D-F) 10084,1623 bead 10. (G-I) 14148,154 bead 6). Left 366 

column: Plotted intensities of the pre-edge peaks, 7113.7/7111.9 eV, with scale bar indicating 367 

values of measured ratio. Middle column: Calculated % Fe3+ using equation 1 and a scale bar 368 

with the values from -5 to +40 % Fe3+. Right column: Measured intensity at 7215, roughly 369 

representative of the total Fe content. content.  370 
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 371 
Figure 3.  Comparison of maps of electron microprobe K Mg content (left) with those of iron 372 

redox state (right) in crystalline lunar glass beads from 74220. % Fe3+ is calculated using 373 

equation 1; scale bar with the values from -5 to +40 % Fe3+/Fe is shown. The high Mg minerals 374 

crystallizing in these beads are olivine, which incorporates only Fe2+. In the XAS maps, olivine 375 

is clearly visible as the darker blue material with little/no Fe3+, while the surrounding melt 376 

contains more Fe3+.   377 
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 378 
Figure 4.  Cartoon of the oxidation/reduction environments in the melt column during ascent and 379 

eruption. 380 




