1	The quench control of water estimates in convergent margin magmas
2	(Revision 2)
3	Maxim Gavrilenko ^{1,2} , Michael Krawczynski ¹ , Philipp Ruprecht ² , Wenlu Li ³ , Jeffrey
4	G. Catalano ¹
5	¹ Department of Earth and Planetary Sciences, Washington University in St. Louis,
6	Campus Box 1190, One Brookings Drive, St. Louis, MO 63130, United States
7	² Department of Geological Science and Engineering, University of Nevada, Reno, 1664
8	N. Virginia Street, Reno, NV 89557, United States
9	³ Department of Energy, Environmental, and Chemical Engineering, Washington
10	University in St. Louis, Campus Box 1180, One Brookings Drive, St. Louis, MO 63130,
11	United States
12	
13	Abstract
14	Here we present a study on the quenchability of hydrous mafic melts. We show via
15	hydrothermal experiments that the ability to quench a mafic hydrous melt to a
16	homogeneous glass at cooling rates relevant to natural samples has a limit of no more
17	than 9 ± 1 wt% of dissolved H ₂ O in the melt. We performed supra-liquidus experiments
18	on a mafic starting composition at 1-1.5 GPa spanning H_2O undersaturated to H_2O
19	saturated conditions (from ~1 wt% to ~21 wt%). After dissolving H_2O and equilibrating,
20	the hydrous mafic melt experiments were quenched. Quenching rates of 20 to 90 K/s at
21	the glass transition temperature were achieved and some experiments were allowed to
22	decompress from thermal contraction while others were held at an isobaric condition
23	during quench. We found that quenching of a hydrous melt to a homogeneous glass at

24	quench rates comparable to natural conditions is possible at water contents up to 6 wt%.
25	Melts containing 6-9 wt% of H_2O are partially quenched to a glass, always containing
26	significant fractions of quench crystals and glass alteration/devitrification products.
27	Experiments with water contents greater than 9 wt% have no optically clear glass after
28	quench and result in fine-grained mixtures of alteration/devitrification products (minerals
29	and amorphous materials). Our limit of 9 ± 1 wt% agrees well with the maximum of
30	dissolved H_2O contents found in natural glassy melt inclusions (8.5 wt% of H_2O). Other
31	techniques for estimating pre-eruptive dissolved H2O content using petrologic and
32	geochemical modeling have been used to argue that some arc magmas are as hydrous as
33	16 wt% of H_2O . Thus, our results raise the question whether the observed record of
34	glassy melt inclusions has an upper limit that is partially controlled by the quenching
35	process. This potentially leads to underestimating the maximum amount of H_2O recycled
36	at arcs when results from glassy melt inclusions are predominantly used to estimate water
37	fluxes from the mantle.
38	
39	Keywords: mafic glassy melt inclusions, hydrous mafic glass quenchability, arc volatile
40	budget, magmatic water
41	
42	Introduction
43	Arc magmas are almost exclusively hydrous (e.g. Wallace 2005; Métrich and
44	Wallace 2008; Plank et al. 2013; Zellmer et al. 2015) as a result of subducting slab
45	dehydration (Grove et al. 2006). The maximum dissolved H ₂ O content in magmas plays a
46	pivotal role in the generation (Katz et al. 2003; Grove et al. 2006; Grove et al. 2012), and

47	evolution (Grove et al. 2003; Zimmer et al. 2010; Grove et al. 2012) of arc melts. Within
48	the crust, magma transport and eruption is strongly modulated by dissolved $\mathrm{H_2O}$ since it
49	imparts buoyancy to primitive magmas traveling through the crust (Herzberg et al. 1983;
50	Ochs and Lange 1999; Carmichael 2002), and when H_2O exsolves at shallow pressures, it
51	affects explosivity through volumetric expansion (Cashman 2004). Besides the effects of
52	H ₂ O on the magmatic system itself, the H ₂ O budget in convergent margins affects mantle
53	rheology and geophysical parameters like seismic wave speed, attenuation, and
54	conductivity of the lithosphere and mantle (Hacker et al. 2003; Pozgay et al. 2009;
55	McGary et al. 2014). Because water plays such a central role in magma genesis and
56	evolution at convergent margins, knowing the water content of the most primitive magma
57	samples at volcanic arcs is of first order importance.
58	Currently, magmatic H ₂ O content estimations are based mostly on studies of melt
59	inclusions (e.g. Frezzotti 2001; Danyushevsky et al. 2002; Schiano 2003; Kent 2008); in
60	particular melt inclusions that are glassy and hosted by the most magnesian olivine
61	crystals, present in tephra/scoria. Melt inclusions (MIs) act as tiny pressure capsules
62	potentially preserving the chemistry of pristine primitive melts as well as minimum
63	dissolved H ₂ O contents. The physical state of a MI post entrapment can be thought of as
64	having three major end-members: 1) glassy MIs; 2) crystallized MIs 3) devitrified MIs.
65	The resulting type of the MI strongly depends on its cooling rates (Frezzotti 2001).
66	Because it has long been assumed that the glassy single-phase melt inclusions have the
67	most rapid cooling rates, direct SIMS (Secondary Ion Mass Spectrometer) and FTIR
68	(Fourier-Transform Infrared Spectroscopy) measurements of H ₂ O dissolved in glassy
69	MIs have served for decades as the 'gold standard' for determining magmatic pre-

70	eruptive H ₂ O content (e.g. Wallace 2005; Plank et al. 2013). Crystallized MIs are thought
71	to be produced in slowly cooling conditions (Frezzotti 2001) and thus are usually
72	presumed to be subject to diffusive degassing of H ₂ O in nature. These inclusions are
73	rarely used for volatile species studies (e.g. Esposito et al. 2016). Devitrified MIs are
74	results from partial modifications of the glass; and those melt inclusions are usually
75	discarded by researchers of magmatic volatile species (Kent 2008).
76	While the evolution of magmatic H ₂ O at shallow depths has been studied
77	thoroughly using glassy MI (e.g. Wallace 2005; Plank et al. 2013), the evolution of
78	magmatic H ₂ O in deeper parts of subduction zones remains less constrained. Volatile-rich
79	magmas undergo nearly complete degassing during ascent, eruption, and cooling.
80	Because H ₂ O solubility is pressure dependent (e.g. Moore et al. 1998; Papale et al. 2006;
81	Shishkina et al. 2010; Mitchell et al. 2017), high water contents above 9 wt% would
82	require MIs formed at mid to lower crustal or even upper mantle pressures, but no glassy
83	melt inclusions preserving >9 wt.% H_2O have been found. The existence and preservation
84	of such melt inclusions is further challenged by the fact that hydrogen diffusion through
85	the crystal lattice of the host allows equilibration between the degassing matrix melt and
86	the entrapped pressurized melt droplet. Recent studies have demonstrated that hydrogen
87	diffusion within a host mineral is rapid (Danyushevsky et al. 2002; Hauri 2002;
88	Portnyagin et al. 2008; Chen et al. 2011; Gaetani et al. 2012; Bucholz et al. 2013; Lloyd
89	et al. 2013; Hartley et al. 2015) causing MIs to be partially open to lose (or gain) volatile
90	species. Hydrogen may also migrate along dislocations or propagation of defect points in
91	the host mineral (Massare et al. 2002; Portnyagin et al. 2008) further enhancing hydrogen
92	exchange between the melt inclusion and the matrix melt. Thus, it has been

93	acknowledged that the amount of H ₂ O MIs contain likely represents a minimum from
94	what was originally dissolved in a particular magma (Gaetani and Watson 2000;
95	Danyushevsky et al. 2002; Hauri 2002; Portnyagin et al. 2008; Gaetani et al. 2012;
96	Bucholz et al. 2013; Lloyd et al. 2013).
97	Despite the limitations in the use of glassy melt inclusions they are still assumed
98	to be among the best archives to record pre-eruptive primitive water contents (e.g.
99	Wallace 2005; Plank et al. 2013; Wallace et al. 2015b), especially when quenched rapidly
100	as tephra of mafic magmas. The rapid quench of the melt inclusions upon eruption or
101	even before eruption results in the preservation of the melt inside host minerals as clear
102	glass. By preferentially analyzing samples from primitive olivine phenocrysts in tephra
103	and scoria, it is assumed that these samples represent the best estimates for pre-eruptive
104	water contents of melts that originate in the mantle. The highest amount of water
105	recorded in melt inclusions with mafic compositions is ~8.5 wt% (de Moor et al. 2013)
106	hosted in minerals from nephelinitic magmas, related to the rift settings. In arc settings
107	the maximum is slightly lower at 7.0-7.5 wt% of H_2O (Auer et al. 2009; Zimmer et al.
108	2010; Weller and Stern 2018).
109	Many excellent MI studies have significantly improved our understanding of the
110	H ₂ O variations in arc magmas (e.g. review/summary in Wallace 2005; Kent 2008; Plank
111	et al. 2013). A review of the existing database of inclusions that have been quantitatively
112	studied for their dissolved H_2O contents concluded that the maximum H_2O content in
113	melt inclusions from a single volcano or cinder cone ranges typically between 1-7 wt%
114	(Plank et al. 2013). Those researchers (Plank et al. 2013) and other studies (Gaetani and
115	Watson 2000; Danyushevsky et al. 2002; Hauri 2002; Portnyagin et al. 2008; Gaetani et

116	al. 2012; Bucholz et al. 2013; Lloyd et al. 2013) have recognized the open system
117	behavior of MIs. Nonetheless, it is still generally interpreted that the maximum water
118	contents of MIs in primitive magmas in subduction zone settings are representative of the
119	amount of H_2O in primitive arc melts (e.g. Straub and Layne 2003; Wallace 2005; Moore
120	2008; Parai and Mukhopadhyay 2012; Wallace et al. 2015b; Peslier et al. 2017).
121	An alternative interpretation of the maximum water content found in glassy melt
122	inclusions is that melts with higher water contents do not quench to a homogeneous glass
123	at natural quenching rates. Such higher water contents (14-16 wt%) for arc magmas have
124	been postulated based on other petrologic constraints to exist at deep crust and upper
125	mantle conditions (Carmichael 2002; Fischer and Marty 2005; Krawczynski et al. 2012).
126	The fact that the majority (98%) of studied glassy MIs record last equilibration at shallow
127	pressures (< 500 MPa; Wallace 2005) raises the question whether all MIs formed and/or
128	equilibrated at shallow depths or whether MIs are formed at all pressures, but by
129	selectively analyzing glassy samples there is a bias in the current data set to low $\mathrm{H_2O}$
130	melt inclusions or those that formed or re-equilibrated shallowly. Here we show that the
131	low pressure record in MIs is not only a result of shallow entrapment or re-equilibration
132	on ascent, but potentially also due to the ability of quenched glass to retain $\mathrm{H_2O}$ in its
133	structure when it is formed as the hydrous silicate melt passes the glass transition.
134	Here we define the term "quenchability", which refers to the ability of a silicate
135	melt to be transformed to a glass upon cooling. This kinetically driven process strongly
136	depends on such parameters as melt polymerization degree and cooling rates (Dingwell
137	and Webb 1990). Adding a significant amount of H_2O to a melt lowers the glass
138	transition temperature (Tg), potentially making hydrous melts harder to quench and

139	producing non-glassy melt inclusions. Devitrified or crystallized MIs are preferentially
140	not studied for their volatile content. Below we present evidence that if hydrous magmas
141	contain greater than ~9 wt% $\rm H_2O$ they cannot form glassy MIs at naturally occurring
142	quench rates. Studies that make global calculations of water exchange between the
143	Earth's interior and the exosphere using MI data for estimates of H ₂ O contents in arc
144	magmas (e.g. Hacker 2008; van Keken et al. 2011; Parai and Mukhopadhyay 2012), are
145	likely underestimating the amount of recycled $\mathrm{H_2O}$ in some sub-arc settings. In addition
146	recent geophysical studies show that the amount of subducted water may be much higher
147	than previously realized (Cai et al. 2018), which would require some amount of arc
148	magmas to contain higher water contents than traditionally recognized.
149	
150	Experimental approach
150 151	Experimental approach The MI record stands in contrast to studies using petrologic and geochemical
151	The MI record stands in contrast to studies using petrologic and geochemical
151 152	The MI record stands in contrast to studies using petrologic and geochemical proxies that provide evidence for up to 16 wt% of H ₂ O in some arc magmas (Carmichael
151 152 153	The MI record stands in contrast to studies using petrologic and geochemical proxies that provide evidence for up to 16 wt% of H ₂ O in some arc magmas (Carmichael 2002; Fischer and Marty 2005; Krawczynski et al. 2012). An underlying assumption in
151 152 153 154	The MI record stands in contrast to studies using petrologic and geochemical proxies that provide evidence for up to 16 wt% of H ₂ O in some arc magmas (Carmichael 2002; Fischer and Marty 2005; Krawczynski et al. 2012). An underlying assumption in MI studies is that glassy MIs (single phase \pm a single exsolution bubble) have the best
151 152 153 154 155	The MI record stands in contrast to studies using petrologic and geochemical proxies that provide evidence for up to 16 wt% of H ₂ O in some arc magmas (Carmichael 2002; Fischer and Marty 2005; Krawczynski et al. 2012). An underlying assumption in MI studies is that glassy MIs (single phase \pm a single exsolution bubble) have the best chance to faithfully record pre-eruptive H ₂ O content, while non-glassy MIs (multiple
151 152 153 154 155 156	The MI record stands in contrast to studies using petrologic and geochemical proxies that provide evidence for up to 16 wt% of H ₂ O in some arc magmas (Carmichael 2002; Fischer and Marty 2005; Krawczynski et al. 2012). An underlying assumption in MI studies is that glassy MIs (single phase \pm a single exsolution bubble) have the best chance to faithfully record pre-eruptive H ₂ O content, while non-glassy MIs (multiple phases) are commonly interpreted as potentially slowly cooled (and, thus, have
151 152 153 154 155 156 157	The MI record stands in contrast to studies using petrologic and geochemical proxies that provide evidence for up to 16 wt% of H ₂ O in some arc magmas (Carmichael 2002; Fischer and Marty 2005; Krawczynski et al. 2012). An underlying assumption in MI studies is that glassy MIs (single phase \pm a single exsolution bubble) have the best chance to faithfully record pre-eruptive H ₂ O content, while non-glassy MIs (multiple phases) are commonly interpreted as potentially slowly cooled (and, thus, have experienced more H ₂ O degassing by diffusion) and also require additional stages of
151 152 153 154 155 156 157 158	The MI record stands in contrast to studies using petrologic and geochemical proxies that provide evidence for up to 16 wt% of H ₂ O in some arc magmas (Carmichael 2002; Fischer and Marty 2005; Krawczynski et al. 2012). An underlying assumption in MI studies is that glassy MIs (single phase \pm a single exsolution bubble) have the best chance to faithfully record pre-eruptive H ₂ O content, while non-glassy MIs (multiple phases) are commonly interpreted as potentially slowly cooled (and, thus, have experienced more H ₂ O degassing by diffusion) and also require additional stages of sample preparation (e.g. Esposito et al. 2016). Anecdotally, many previous experimental

162	quenchability limit for hydrous silicate melts has not been studied systematically before.
163	Thus, how much water can we quench in a single-phase glassy inclusion with naturally
164	occurring cooling rates?
165	To test the limits of quenchability for hydrous glasses for naturally occurring
166	cooling rates, we conducted a series of hydrous (1-21 wt% of pre-loaded H_2O) supra-
167	liquidus temperature experiments (1225-1300°C, 1-1.5 GPa) on a mafic calc-alkaline
168	composition (Table 1), in order to determine the highest concentration of dissolved
169	H ₂ O _{total} that a quenched glass is able to contain (H ₂ O _{total} accounts for all hydrogen species
170	in the glass). The mafic composition for experiments was chosen because previous
171	studies that explore primitive magma water contents are in the mafic range of 44-56 wt%
172	of SiO ₂ (Fig. 1). Synthetic glass powders and deionized water were loaded in $Au_{80}Pd_{20}$
173	metal capsules and heated above the liquidus and equilibrated for 10-16 hours in a piston-
174	cylinder apparatus. The experiments were heated to 1225-1300°C, near or above the
175	liquidus (depending on the water content), and quenched at rates applicable to cooling
176	rates for volcanic tephra (Lloyd et al. 2013) (see Materials and Methods section for more
177	details). Dissolved H ₂ O contents in quenched experimental run products were determined
178	by thermo-gravimetric analysis (TGA), electron microprobe analysis (EPMA; "volatiles
179	by difference" method), and secondary ion mass spectrometry SIMS.
180	The experimental pressure (1-1.5 GPa) represents deep crustal and shallow mantle
181	pressures. We have chosen this pressure because H ₂ O solubility in the melt is sufficiently
182	high (~16-20 wt% H ₂ O; e.g. Shishkina et al. 2014; Mitchell et al. 2017 and references
183	therein) to contain far more dissolved H ₂ O than what is recorded in natural glassy MIs.
184	Overall, H ₂ O solubility in melts/glasses of different compositions has been best

constrained at conditions <500 MPa representing crustal depths shallower than 15-16 km

(Revision 2)

185

186	(Hamilton et al. 1964; Moore et al. 1998; Papale et al. 2006; Shishkina et al. 2010 and
187	others).
188	
189	Materials and Methods
190	Starting materials
191	Experiments were conducted on a starting composition that was synthesized to
192	match the composition of a primitive basaltic andesite (Mg#=71), 85-44, erupted from
193	Mt. Shasta, CA, in the Cascades (Baker et al. 1994; Grove et al. 2003, 2005). This
194	basaltic andesite was chosen because it is a low silica (52 wt% SiO ₂), high-MgO (10.5
195	wt% MgO) end member of the Mt. Shasta primitive lava suite, and known from
196	experimental studies to be a hydrous magma composition. The starting composition was
197	made from reagent grade oxides and carbonates, ground under isopropanol in a ball mill,
198	and decarbonated at 1000°C for 8 hours. The ground powder was glassed at 1,500°C in a
199	Pt crucible in air for 1 hour, and then quenched in the crucible by dropping it in water.
200	The glass was extracted from the crucible and ground in an agate mortar under
201	isopropanol. The ground glass was then remelted in air and quenched and crushed
202	following the same procedures to ensure homogeneity. In total, the melting/grinding
203	procedure was repeated three times to ensure homogeneous and crystal free starting
204	material. The major element composition and homogeneity of the glass starting material

- 205 was inspected by electron microprobe analysis (Table 1).
- Since the starting material was glassed in air we expect the starting material to have all iron as Fe^{3+} , before the experiments. However, the experiments (see below for

208	procedures) were unbuffered for fO_2 (oxygen fugacity). The presence of Fe-bearing
209	olivine and orthopyroxene crystals in some of the experimental products (Table 2, 3)
210	confirms that some of the Fe^{3+} was reduced to Fe^{2+} during the experiments. It was shown
211	recently that increasing Fe ³⁺ content of anhydrous silicate melts increases their viscosity
212	and glass transition temperature (Di Genova et al. 2017), which indirectly means that
213	increasing Fe^{3+} improves the quenchability. The effect of fO_2 on hydrous glasses
214	quenchability has not yet been studied directly. In our case we expect the Fe^{3+}/Fe^{2+} to be
215	higher than zero, but at this time it is unconstrained.
216	

217 Experimental procedures

218 Experiments were conducted using the 1/2 piston cylinder apparatus (Boyd and 219 England 1960) at the Washington University Experimental Studies of Planetary Materials 220 laboratory. We employed a single capsule, which contains an unbuffered mixture of 221 powdered glass starting material and deionized water. We used an Au₈₀Pd₂₀ alloy capsule 222 for all experiments. The capsule was prepared with a small lip and is fitted with a lid that 223 is cold-welded by pressure (Ayers et al. 1992), a design that has been successful in super-224 hydrous experiments (e.g. Brenan et al. 1994; Brenan et al. 1995; Krawczynski et al. 225 2012). The lid seals when the piston load is applied to the capsule during pressurization, 226 before heating. The capsule is surrounded by a soft-fired pyrophyllite ring. During 227 compression the pyrophyllite ring deforms with the capsule and helps avoid any shear 228 stresses from developing. A BaCO₃ pressure cell was used in all experiments. Most of the 229 experiments were conducted on glass starting materials at 1 GPa, but several experiments 230 were conducted at 1.5 GPa (see details below). Experiments were doped with different

231	starting amounts of deionized water ranging from ~1% to ~21% of the weight of sample
232	glass + H_2O (Table 2). Turning off the power quenched the experiments. Cooling during
233	the finite quench duration leads to thermal contraction and a concurrent drop of pressure
234	on the sample (Bista et al. 2015). To test whether the pressure evolution during the
235	quench duration significantly controls the final run we quenched some of our 1 GPa
236	experiments under isobaric (pumped pressure at quench) conditions and conducted
237	several 1.5 GPa experiments. The maximum experimental cooling rate ranges up to 120
238	K/s (Fig. 2), which is common for piston-cylinder apparatus (e.g. Zhang et al. 2017).
239	However, the cooling rates at specific glass transition temperatures (Tg was calculated
240	after Deubener et al. 2003) are 20-90 K/s (Fig. 2), which match those for melt inclusions
241	that form in samples that range in particle size somewhere in between ash particles (>500
242	K/s) to 2 cm lapilli (up to 22 K/s; Lloyd et al. 2013; Fig. 3). Thus, the quench rates
243	achieved in the piston-cylinder closely approximate those for the most frequent size of
244	tephra samples used in melt inclusions studies. Each experiment used porous MgO parts
245	to surround the sample, and experiments were held at pressure for 5-hours at 800°C in
246	order to anneal the porous MgO starting material before the temperature was increased up
247	to maximum values (1225-1300°C). This annealing step prevented gold from flowing into
248	grain boundaries and pores in the MgO. Experimental durations were 16 hours for
249	1225°C runs and 10 hours for 1300°C runs. The run times were deemed sufficient by
250	observing homogeneous glass as a run product in low H2O experiments. Experimental
251	conditions and run products are shown in Table 2.
252	

253 Electron microprobe analysis/characterization (EPMA)

254	For each experiment, post-quenching, several 1-2 mm pieces from each
255	experiment were prepared for analysis and characterization by electron microprobe.
256	Experimental products were investigated for vesiculation and quench crystallization.
257	Quantitative measurements of the major element chemistry of quenched products were
258	obtained using the JEOL 8200 instrument installed at Washington University in St. Louis.
259	A beam current of 25 nA, an accelerating voltage of 15 kV, and a beamsize 30 μm were
260	used for all glass analyses. EPMA analyses of experimental run products are listed in
261	Table 3. Chemical homogeneity of the run products was checked by multiple EPMA
262	analyses and presented in Table 3 as standard deviation (2-sigma). Iron loss to the
263	$Au_{80}Pd_{20}$ capsule was calculated by comparing the bulk glass composition to that of the
264	starting material and shown to be always less than 8.5% and usually less than 1.1%.
265	
266	Imaging
267	Images of the experimental products, presented in this study, were obtained with
268	the following instruments: an optical microscope, the JEOL 8200 electron microprobe
269	installed at Washington University in St. Louis as well as a JEOL JSM-6010LA
270	analytical scanning electron microscope and a JEOL JSM-7100F field emission scanning
271	electron microscope housed at the University of Nevada, Reno. The images are presented
272	on Figs. 6, 9 and also in Appendices #1 and #2.
273	
274	Quantitative analysis of H ₂ O in experimental products
275	To determine the dissolved H_2O of our experimental run products we used a bulk

extraction technique (Ihinger et al. 1994), which is based on measuring the loss on

277	ignition of the hydrous glass. Quantification of water content was conducted using a
278	Thermogravimetric Analyzer (TGA, Q5000IR, TA Instruments) having a sensitivity of
279	0.1 μ g and the weighing accuracy \pm 0.1% (see method's details in Mielenz et al. 1953;
280	Knowlton et al. 1981; Guggenheim and van Groos 2001; Földvári 2011). In a typical
281	TGA analysis, 5-7 mg of sample was crushed to a fine powder in an agate mortar
282	immediately prior to the analysis. In this way we minimized H ₂ O loss from the sample, or
283	$\mathrm{H}_{2}\mathrm{O}$ gain by adsorption onto the powdered sample from the atmosphere. The powdered
284	sample was placed in a platinum pan and heated at a rate of 5°C/min to 850°C under a
285	flow of N_2 (1 bar, 25 mL/min). Ultra-pure N_2 was used for all measurements. After
286	heating, the sample was held at 850°C for a time (5-30 min) until no mass change greater
287	than 1 μg per minute was observed. For each TGA run, the change in mass and
288	temperature was recorded continuously during the entire measurement. The techniques
289	that were employed in this study actually measure the total volatile content of
290	experimental run products, not just the dissolved H2O. The major volatile component of
291	the experimental run products is H ₂ O, however other volatile species, primarily dissolved
292	CO ₂ , may contribute to the total volatile content. The run products from our experiments
293	have low amounts of CO_2 (~500 ppm; see details in the Result section). Such CO_2
294	content is small compared to the H_2O contents of these experiments, so that contribution
295	to both total volatile content and H ₂ O solubility during the quench are assumed to be
296	negligible (e.g. Papale et al. 2006; Métrich and Wallace 2008; Shishkina et al 2010;
297	Steele-Macinnis et al. 2011; Steele-Macinnis et al. 2017).
298	H ₂ O determinations by TGA analyses of our experimental products also were
299	complemented by H_2O estimations by difference from 100% totals from EPMA analysis

300	("volatiles by difference" (VBD) method, e.g. Nash 1992; Devine et al. 1995; King et al.
301	2002; Humphreys et al. 2006; Blundy and Cashman 2008). The VBD method is widely
302	used for quantifying the volatile contents in both of experimental (e.g. Di Carlo et al.
303	2006; Botcharnikov et al. 2008; Erdmann and Koepke 2016) and natural (e.g. Sommer
304	1977; Rutherford and Devine 1996; Métrich et al. 2004; Holtz et al. 2005) silicate
305	glasses. The quantitative analysis of H_2O both by TGA and VBD determinations in
306	experimental products are listed in Table 3. The estimated uncertainty for total water
307	content using the by difference method is higher than the TGA because it takes into
308	account the uncertainty on all the other species measured. It was shown recently that the
309	VBD method overestimates the volatile content of hydrous glasses as much as $\sim 1 \text{ wt\%}$
310	due to sub-surface charging during EPMA analysis (Hughes et al. 2019). However the
311	two methods agree within uncertainty for all the samples measured with both methods.
312	
313	Secondary ion mass spectrometry (SIMS) analysis of volatile components
314	Glass chips from two experimental charges (F099, n=3; F087, n=3) were mounted
315	individually in dental resin and polished on one side. After removal from the resin using
316	an acetone wash the chips were mounted in indium metal for SIMS (secondary ion mass
317	spectrometer) analysis. Volatile species (H ₂ O, CO ₂ , Cl, F, and S) and P in the
318	experimental glasses were measured on a Cameca IMS 7f-GEO ion probe at Washington
319	University in St. Louis. The procedure was adapted from Hauri et al. (2002) measuring
320	monovalent anions of ¹² C, ¹⁶ O, ¹ H, ¹⁹ F, ³⁰ Si, ³¹ P, ³² S, and ³⁵ Cl. A primary beam (5–10
321	nA) accelerated to 10 kV was used to create a ~20 μm spot size. We used primary
322	basaltic reference materials ALV-519-4-1, ALV-1833-11, ALV-1846-12, ALV-1833-1

323	characterized by Kumamoto et al. (2017) and Fonualei Rift:ND-60-01 (n=10) and
324	Mangatolu Rift:ND-70-01 (n=11) as secondary reference materials (Lloyd et al. 2013).
325	The primary reference glasses were used to develop calibration curves for H_2O , F, P, S,
326	and Cl. Given the high background for ¹² C for the standard mount, likely due to
327	contamination derived from the standard mount, we used the secondary standards to
328	obtain a calibration curve for CO ₂ . A significantly lower background in ¹² C characterized
329	the sample mount. It is noted that we report CO ₂ concentrations for the experimental
330	glasses with less confidence given that no additional secondary standard was available to
331	confirm calculated concentrations. A synthetic pure silicate glass, Suprasil, was measured
332	to estimate limits of detection for H ₂ O, F, P, and S (Table 4). CO ₂ is affected in the same
333	way as mentioned above and Cl is high in this reference glass.
334	

335 Powder X-ray Diffraction

The quenched products from experiments F071, F091, and F098 were ground and then analyzed using powder X-ray diffraction (XRD) to identify mineral components. All samples were mounted in zero-background Si sample holders with a 10 mm diameter well. Measurements were made on a Bruker d8 Advance diffractometer using a Cu K α Xray tube and a LynxEyeXE energy-dispersive strip detector. Data were collected from 5 to 80° 20 in 0.02° steps with 0.5 s integration time; the samples were continuously rotated at 15 revolutions per minute.

343

344

Results

345	Our results show that quenched mafic glasses, which retained the total pre-loaded
346	$\rm H_2O$ content as dissolved $\rm H_2O$, only occurred in experimental runs with less than ~9 wt%
347	H_2O (Fig. 4), at higher pre-loaded H_2O content (up to ~21 wt%) the experiments did not
348	quench to a homogeneous glass. Key in this analysis is both the H ₂ O solubility in melts
349	and the H ₂ O quenchability in glasses. At the P and T conditions of our experiments, the
350	maximum solubility of H_2O in the mafic melt should be approximately 20 wt% (Mitchell
351	et al. 2017), far exceeding observed H ₂ O contents in our quench products.
352	Textures of the quenched experimental run products systematically changed with
353	increasing pre-loaded H ₂ O contents (Fig. 5). Experiments with up to 6 wt% pre-loaded
354	H ₂ O quenched to optically clear, non-vesiculated glass. For experiments with more than 6
355	wt% H_2O but less than 9 wt% H_2O we identify a "transition zone" where run products
356	were not completely quenched to vesicle free glass; instead there was a mixture with
357	areas of optically clear glass and areas of glass thoroughly permeated with quench
358	crystals, vesicles and devitrified glass. For our experiments with >9 wt% of pre-loaded
359	H ₂ O, optically clear glass was not present at any amount and all experimental products
360	were an intimate mixture of fractured, vesicular, devitrified glass, quench crystals, and
361	hydrous products of glass alteration (see more details about textures for every sample in
362	the Appendix #1).
363	The quenched products from experiments F071 (18 wt% of H_2O), F091 (10 wt%
364	of H_2O), and F098 (12.6 wt% of H_2O) were analyzed using powder X-ray diffraction
365	(XRD) to identify minerals present. XRD patterns (Fig. 6) of the three run products
366	consist of a number of broad and often asymmetric features on top of a background

367 containing a broad feature near 30°. This background feature indicates a significant

368	amorphous component, such as glass. Features in the XRD pattern at low angles (Fig. 7)
369	are consistent with smectites (Moore and Reynolds, 1997) having a range of hydration
370	states, with apparent d-spacings spanning \sim 12.5 to \sim 14.9 Å. The identification of
371	smectites is further supported by the presence of asymmetric features near 19 and 34°
372	(Fig. 6), which are (hk0) bands indicative of a turbostratically-stacked phyllosilicate. A
373	phyllosilicate (060) feature present near 60° consists a composite peak (Fig. 7)
374	corresponding to two or more phases with d-spacings in the range of 1.530 to 1.542 Å,
375	indicating all phases are trioctahedral in nature (Moore and Reynolds, 1997). Additional
376	features present in all patterns (Fig. 6) likely originate from higher-order basal reflections
377	associated with smectites having different degrees of hydration and additional turbostratic
378	(hk0) bands. However, some features present may also result from partial
379	interstratification with other phyllosilicates. In addition to the above features, sample
380	F098 contains sharp diffraction peaks near 5.9, 11.8, and 17.8° (Figs 7, 8) corresponding
381	to the (001), (002), and (003) reflections, respectively, of chlorite. The narrow features at
382	higher angles that are unique to this sample also likely originate from chlorite, although
383	additional accessory crystalline phases may be present as well. While samples F098 and
384	F071 contain two peaks from periclase, this phase is a contaminant originating from the
385	experimental matrix outside of the reaction capsule. High-quality SEM images of those
386	three non-glassy experimental products with comparison to a glassy one (experiment
387	F099) are presented on Fig. 8 (more SEM images of those experiments could be found in
388	the Appendix #2). The SEM images visually confirm the presence vast non-glassy
389	material (Fig. 8a, 8b, 8c) having flaky appearance, which cannot be confused with the
390	appearance of blocky, concoidally-fractured glass (Fig. 8d).

391	Basaltic hydrated experimental glasses F099 and F087 were analyzed by SIMS
392	and concentrations are reported in Table 4. SIMS results agree well with how much water
393	was initially loaded into the capsules and with other determinations of water contents
394	after experiment. CO ₂ contents determined by SIMS (note that concentrations are
395	reported with less confidence) are 461 (F087) and 575 ppm (F099), which suggests that
396	CO ₂ did not contribute significantly to any weight loss determined by TGA. The same
397	applies for the other volatile elements that never exceed 200 ppm.
398	
399	Discussion
400	
401	Solubility vs. Quenchability
402	The glass transition – a conversion from a liquid silicate melt to a solid glass – is
403	an important process responsible for quenching glassy MIs, both in natural systems and
404	experimentally. This kinetic process strongly depends on parameters such as melt
405	polymerization degree and cooling rates (Dingwell and Webb 1990). The temperature of
406	the glass transition (Tg) is also controlled by the amount of dissolved H ₂ O, which de-
407	polymerizes a melt. While Tg of natural mafic dry melts is about 1000 K, Tg for hydrous
408	melts are significantly lower; as low as 450 K for a melt with 20 wt% of dissolved $\mathrm{H_{2}O}$
409	(Deubener et al. 2003). For higher melt H ₂ O contents, the lower Tg requires particularly
410	high cooling rates to quench a melt to a glass. During the quenching process the cooling
411	rate varies (Fig. 2) and is typically highest as the quenching commences at high
412	temperatures. Thus, melts with no or low dissolved H ₂ O content quench easily as the
413	glass transition temperature is rapidly reached. In contrast, melts with a low Tg (for

414	example, H ₂ O-rich melts) require high peak cooling rates at high temperatures, which
415	would be sustained to low temperatures (Fig. 2).
416	Under normal quenching conditions for piston cylinder experiments, the
417	quenching is achieved by shutting off power to the device. This instantaneous loss of
418	power cools the experiment at rates (Fig. 2, 3) similar to natural erupted samples (Lloyd
419	et al. 2013). This cooling leads to thermal contraction and a concurrent drop of pressure
420	on the sample (Bista et al. 2015). Such pressure change may affect the run products, if the
421	sample becomes water-oversaturated prior to reaching Tg as a consequence of pressure
422	drop in the sample. In our experiments, we tracked the pressure change at quench in
423	every experiment (Fig. 9). The glass transition is reached in all experiments at pressures
424	higher than 500 MPa. Two steps were taken to test whether the pressure evolution in our
425	experiments controls the quenchability of the sample: 1) some of our 1 GPa experiments
426	(Table 2; Fig. 9) were quenched under isobaric (without pressure drop) conditions and 2)
427	several 1.5 GPa experiments were conducted (see Table 2 and Fig. 9). The latter higher
428	pressure experiments had a contraction pressure drop, but still maintained pressures over
429	900 MPa. All experiments, including those with the modified run procedures ended up
430	with the same experimental results. In all cases, our observed limit of ~ 9 wt% dissolved
431	$\mathrm{H_{2}O}$ in the experimental glass is much lower than the $\mathrm{H_{2}O}$ content in the melt suggested
432	from solubility experiments that determined the H ₂ O solubility indirectly through
433	partitioning into olivine (Mitchell et al. 2017). Thus, our experiments indicate that the
434	melt to glass transition fundamentally effects how much water can remain dissolved and
435	the release of water from the melt occurred because of the structural change related to the

melt-glass transition and was not in response to lower H₂O solubility limits at lowerpressures.

438	How H ₂ O is accommodated in the atomic structure of the glass may change
439	during the melt-glass transition, likely due to changes in the speciation of hydrogen. In
440	melts, water dissolves as both hydroxyl groups (OH^-) and molecular water (H_2O_m)
441	(Stolper 1982a, 1982b; Silver and Stolper 1989; McMillan 1994). The incorporation of
442	hydroxyl groups is well understood. Hydroxyl groups are thought to break bridging
443	oxygen bonds and therefore easily bound structurally within the silicate melt (e.g. Mysen
444	2014). The structural position of molecular water in silicate melt is less clear. As a
445	neutral, although polar species molecular water potentially behaves similarly to noble
446	gases, which fit into holes in the melt/glass structure (Carroll and Stolper 1993; Guillot
447	and Sarda 2006; Guillot and Sator 2012). If water occupies free volumes or structural
448	cavities in the melt (Paonita 2005), the so-called ionic porosity (i.e., the volume of holes
449	in the structure; Carroll and Stolper 1993) may control the solubility of water molecules
450	in silicate melt/glass. Compared to high temperature and higher H_2O_{total} contents where
451	water is primarily incorporated as hydroxyl groups (OH ⁻) into the silicate melt structure
452	(Nowak and Behrens 1995; Chertkova and Yamashita 2015), OH ⁻ groups convert to
453	molecular water during cooling and quenching to a glass (Stolper 1982a, 1982b; Silver
454	and Stolper 1989). The ratio of hydrogen bound as hydroxyl groups to molecular water
455	(OH^{-}/H_2O_m) decreases from up to 4 in the melt to 0.25 in quenched glass (for an
456	experimental charge with 8 wt% of H_2O_{total} ; Chertkova and Yamashita 2015). The drastic
457	increase in the amount of molecular H_2O during quenching may exceed the ability of the
458	glass to accommodate water in its structural cavities. For hydrous arc magmas with 14-20

459	wt% of H_2O_{total} (36-46 mol% of H_2O), quenching to glass in MIs might result in
460	occupying all free structural cavities by molecular H_2O and exsolving excess H_2O to a
461	fluid or gas phase (bubbles), which can promote alteration/devitrification (Anderson
462	1991) through crystallization of hydrous minerals and/or over pressurize the inclusion
463	causing the host crystal to rupture.

464

465 P-T paths of experimental products at quench vs. natural MIs

466 When a melt inclusion forms in nature, the pressure inside and outside the olivine 467 is equal. During magma ascent and eruption, the pressure inside the melt inclusion will be 468 reduced due to a combination of several factors, such as elastic deformation of the host 469 mineral, post entrapment crystallization, diffusive volatile components loss, and volume 470 change at glass transition. The pressure inside the melt inclusion gets reduced, but does 471 not go to zero (e.g. Steele-MacInnis et al. 2011; Gaetani et al. 2012; Hartley et al. 2014; 472 Moore et al 2015; Wallace et al. 2015a; Steele-MacInnis et al. 2017). Some of the 473 contributions to the pressure drop might be minimized in the case of rapid magmatic 474 ascent, but overall partial decompression will occur. The pressure drop in a MI can be 475 calculated (Zhang 1998) and it is about 3-4 kbar for olivine hosted MIs that are $< 150 \mu m$ 476 in size and are formed at a depth of 20-30 km (e.g. Schiano and Bourdon 1999; 477 Maclennan 2017). This pressure drop is similar in magnitude compared to the pressure 478 change resulting from thermal contraction during the quenching of our experiments under 479 uncontrolled pressure conditions (described above) (Fig. 9). Moreover, even the 480 experiments with isobaric quench produced the same run products as the experiments 481 with a pressure drop. Thus, our experiments represent a conservative estimate for the

482	maximum water content that can quench to a glass in natural melt inclusions and we
483	suggest that decompression conditions at quench in our experiments were comparable to
484	natural MIs.

485

486 MI re-equilibration vs. quenchability

487 It is often interpreted that the most water-rich melt inclusions analyzed for a given 488 volcanic suite of samples experienced the least water loss due to diffusive re-489 equilibration, and thus are the best estimates we have for the highest water contents of 490 primitive arc magmas (e.g. Métrich and Wallace 2008; Bouvet de Maisonneuve et al. 491 2012; Lloyd et al. 2013 and references therein). This is fundamentally different than what 492 we are showing in this study, which is that there is a physical limit to how much water a 493 glassy melt inclusion can hold. Because the highest values of measured dissolved H_2O in 494 melt inclusions coincide with the experimentally determined quenching limit, it precludes 495 the use of the melt inclusion record to determine the existence and/or prevalence of 496 super-hydrous arc magmas. Indeed, MIs lose significant amounts of water during slow 497 ascent of arc magma to the surface due to rapid hydrogen diffusion. But even in cases 498 when magma ascends extremely rapidly, and keeps most of its original H_2O content, a MI 499 with high water content (>9 wt%) is unlikely to be quenched to a glassy MI. 500 Deep-formed crystals are brought to the surface in arcs fairly commonly. Mantle 501 xenoliths while not extremely abundant, are ubiquitous amongst most arcs (e.g. Bryant et 502 al. 2007; Ionov 2010), and are much larger in size than single crystals. If xenoliths can 503 make it to the surface from the mantle, certainly deep-formed crystals can as well. In the 504 case of arcs there is also a common occurrences of primitive olivine and pyroxene

505	phenocrysts (Mg# \approx 90 and more; e.g. Nye and Reid 1986; Ozerov 2000; Straub et al.
506	2008; Ruprecht and Plank 2013; Gavrilenko et al. 2016a; 2016b; Streck and Leeman
507	2018), which are the very first crystals to form from melts in equilibrium with the mantle,
508	and are most likely formed at depth. Many of those deep primitive crystals contain MIs
509	(e.g. Churikova et al. 2007; Portnyagin et al. 2007; Johnson et al. 2008; Cooper et al.
510	2010; Mironov and Portnyagin 2011; Ruscitto et al. 2011; Tolstykh et al. 2012; Mironov
511	et al. 2015; Walowski et al. (in review)) with a range in volatile contents.
512	What then can explain the lack of high-pressure glassy melt inclusions? There are
513	two non-mutually exclusive mechanisms for this: re-equilibration of hydrogen at shallow
514	pressures and the existence of super-hydrous melt inclusions that cannot quench to a
515	glass. For melt inclusions to retain >9 wt% H_2O until eruption and quenching, they must
516	ascend rapidly to the surface from depths where water solubility exceeds 9 wt%. Such
517	rapid ascent has been proposed for some arc volcanoes (Gordeychik et al. 2018). We
518	would still emphasize that H_2O re-equilibration between MIs and matrix melt is known to
519	be fast and likely controls the final recorded H_2O content in MIs. Partial to complete re-
520	equilibration occurs on timescales of hours to days (e.g. Qin et al. 1992; Gaetani et al.
521	2012; Bucholz et al. 2013) depending on the crystal and melt inclusion size, the magma
522	temperature, and the ascent rate. However, as diffusive flux out of the melt inclusions is a
523	direct function of the concentration gradient between the matrix melt and the melt
524	inclusion, re-equilibration is most effective at shallow pressures, where fast ascent on the
525	order of minutes to hours has been suggested (e.g. Demouchy et al. 2006; Humphreys et
526	al. 2008; Lloyd et al. 2014, Ferguson et al. 2016, Zellmer et al. 2016; Petrelli et al. 2018
527	and references therein). In the lower crust where H ₂ O solubility is high the gradient of

528	H ₂ O contents between a MI and surrounding magma is small, re-equilibration is slowed.
529	Thus, ascent driven water loss from melt inclusions below 10-12 wt% H_2O is limited
530	until mid-crustal depth (6-7 kbar for 10-12 wt% H ₂ O; Shishkina et al. 2010). Rapid
531	magma ascent is likely in some cases due to such factors as extreme buoyancy of hydrous
532	magmas (e.g. Herzberg et al. 1983; Ochs and Lange 1999), the rapid dynamics of dike
533	propagation (Rubin 1993; Dahm 2000; Taisne and Jaupart 2011; Rivalta et al. 2015), and
534	absence of a crustal magma chamber for an arc volcano (Ariskin et al. 1995; Ozerov et al.
535	1997; Lees et al. 2007; Ozerov 2009; Mironov and Portnyagin 2011; Kayzar et al. 2014;
536	Levin et al. 2014), which could help to preserve near-original H ₂ O contents in primitive
537	melt inclusions (and avoid/minimize rapid re-equilibration of a MI with external magma).
538	
538 539	Comparison of experimental results to natural MIs
	Comparison of experimental results to natural MIs Most mafic MIs from subduction zone settings have low H ₂ O content (<4 wt%;
539	
539 540	Most mafic MIs from subduction zone settings have low H ₂ O content (<4 wt%;
539 540 541	Most mafic MIs from subduction zone settings have low H ₂ O content (<4 wt%; Fig. 1) presumably caused by extensive degassing and diffusive equilibration through
539 540 541 542	Most mafic MIs from subduction zone settings have low H ₂ O content (<4 wt%; Fig. 1) presumably caused by extensive degassing and diffusive equilibration through olivine-host crystals. Emphasis in recent studies has shifted to analyzing melt inclusions
539 540 541 542 543	Most mafic MIs from subduction zone settings have low H ₂ O content (<4 wt%; Fig. 1) presumably caused by extensive degassing and diffusive equilibration through olivine-host crystals. Emphasis in recent studies has shifted to analyzing melt inclusions from fast cooled olivine grains in tephra particles, which often show H ₂ O content of >4
539 540 541 542 543 544	Most mafic MIs from subduction zone settings have low H ₂ O content (<4 wt%; Fig. 1) presumably caused by extensive degassing and diffusive equilibration through olivine-host crystals. Emphasis in recent studies has shifted to analyzing melt inclusions from fast cooled olivine grains in tephra particles, which often show H ₂ O content of >4 wt%. (e.g. Johnson et al. 2008), but do not exceed 8.5 wt% of H ₂ O (de Moor et al. 2013).

- 548 maximum content observed in nature represents a physico-chemical limit to the amount
- 549 of H₂O that can be found dissolved in a glassy melt inclusion.

550	Studies that focus on measuring water contents of glassy melt inclusions show
551	that MI measurements are most abundant in the range of 1 to 6 wt% $\mathrm{H_{2}O}$ contents (99%
552	of the data points). Finding glassy melt inclusions in this range is common and consistent
553	with our experiments. More hydrous glassy melt inclusions become increasingly rare in
554	what we refer to in the experiments as the "transition zone" (6-9 wt% H_2O , Fig. 1). For
555	the experiments we propose that quenching to an optically clear single-phase glass is
556	kinetically controlled and by analogy we expect natural MIs that form from melts with 6-
557	9 wt% of H_2O to quench to non-glassy inclusions. Only in the rare cases where quench
558	rates are extremely high and samples experience natural kinetic barriers to forming
559	quench crystals (i.e. little undercooling before the glass transition is achieved) can glassy
560	melt inclusions form. The rarity of glassy melt inclusions with high water contents is thus
561	not directly tied to the rarity of high water content melts, but to the preferential analysis
562	of glassy melt inclusions that get selected for study. Berndt et al. (2002) were able to
563	quench an optically clear (bubble- and crystal-free) glass from a basaltic melt containing
564	9.38 wt% of H_2O using a rapid-quench device in an internally heated pressure vessel for
565	quench rates of approximately \sim 150 K/s. The higher cooling rate at Tg is the likely
566	reason why Berndt et al. (2002) obtained better quality quenched glass, than ones from
567	our study. Indeed, this result (9.38 wt% of H_2O) is the maximum for published
568	experiments on mafic quenched glasses, and is still consistent with our results. However,
569	it is probably not possible to obtain such high cooling rates (~150 K/s) at Tg in natural
570	MIs.
571	For our experiments with >9 wt% of loaded H_2O , optically clear glass was not

572 present and instead an intimate mixture of fractured, vesicular, devitrified glass, quench

573	crystals, and hydrous products of glass alteration comprised all experimental products. X-
574	ray diffraction measurements on experimental run products from super-hydrous
575	experiments show mineralogy of run products that includes low-temperature hydrous
576	minerals (smectites, chlorite) and amorphous material that is likely poorly quenched melt.
577	A similar mineralogy has been described in devitrified MIs in olivine (e.g. Imae and
578	Ikeda, 2007).
579	There are multiple possible devitrification mechanisms, which cannot be

580 distinguished with our current experimental setup: 1) during the quench, water exsolves

and alters the glass in the experiment producing a palagonite-like substance (Bonatti

582 1965), which is basically a mixture of a variety of smectites and potentially zeolites and

583 oxides (Stroncik and Schmincke 2002); 2) a devitrification mechanism where the

584 crystallization temperature of hydrous minerals is higher than the Tg and this leads to the

585 nucleation and crystallization of hydrous minerals before a glass transition. A more

586 detailed documentation of the devitrification mechanism would require in situ

587 observations. Nevertheless, natural melt inclusions with H₂O contents above 9 wt% most

588 likely never quench to a glass, and form devitrified inclusions (Anderson 1991; Imae and

589 Ikeda, 2007) or exsolve water that may over pressurize the inclusion and break the host

590 crystal (decrepitation, e.g. Wanamaker et al. 1990).

591 Our results indicate that 9 wt% of dissolved H_2O is a physical limit for silicate 592 mafic melts to quench to a homogeneous glass under naturally-occurring cooling rates 593 (Fig. 4). Thus, the observed maximum of 8-9 wt% H_2O from glassy mafic MI studies 594 may correspond to a quenchability limit (Fig. 1). We speculate that melt inclusions of 595 H_2O -rich magmas (>9 wt% H_2O) may exist, but they may never get preserved as glassy

596	MIs. Therefore, studies that focus solely on glassy single-phase MIs in olivine (or any
597	mineral host) will systematically be limited to finding dissolved water contents less than
598	8-9 wt% and therefore may not fully characterize the magmatic H_2O budget in
599	subduction zones.
600	
601	Implications
602	Our hydrothermal experiments show that the maxima of 8-9 wt% of dissolved
603	H ₂ O from MIs studies matches the physicochemical limit of quenched glassy-melt
604	inclusions. At higher dissolved H2O contents and natural quenching rates mafic melts
605	cannot form glassy MIs. The possibility that such a limit for glassy MIs exists has never
606	before been directly studied experimentally and requires a reevaluation of using MIs as a
607	primary tool to estimate global water fluxes at arcs. MIs likely form at all depths where
608	crystallization occurs, and the lack of deep formed and equilibrated MIs in the existing
609	literature suggests there might be a higher probability for super-hydrous (>9 wt% of
610	H ₂ O) magmas than previously recognized. The results of this study have identified five
611	main closing thoughts:
612	• Glassy MIs are excellent recorders of pre-eruptive H ₂ O contents in the upper-
613	most part of the crust, where the solubility limit for hydrous magmas is less than 6-
614	7 wt% H ₂ O. Thus, MI studies focusing on degassing and eruption-style phenomena
615	are not affected by our results.
616	• A higher abundance of magmas containing >10 wt% of H ₂ O may explain why
617	dense primitive magmas in convergent margins can quickly reach the surface
618	without much crystallization and fractionation (Herzberg et al. 1983; Kohn et al.

619	1989; Ruprecht and Plank 2013), despite a low-density filter in the form of evolved
620	magmas and crust in their path.
621	• Because glass quenchability is dependent on the amount of water in a mafic
622	sample, MI studies that focus on single-phase glassy MIs are introducing a
623	previously unrecognized sampling bias into our understanding of primitive
624	magmas.
625	• Our findings suggest that examining the mineralogy of non-glassy melt
626	inclusions found in quickly cooled environments such as small lapilli or even ash
627	deposits for the presence of chlorites or smectites may be used to identify super-
628	hydrous magmas.
629	• Estimates of total water contents returned to the crust/atmosphere by tectonic
630	recycling based on studies of MIs (e.g. Straub and Layne 2003; Wallace 2005; Parai
631	and Mukhopadhyay 2012; Wallace et al. 2015b; Peslier et al. 2017) likely
632	underestimate the amount of returned H2O. Recent geophysical studies (Cai et al
633	2018) also see evidence for more extensive hydration of incoming slabs at arcs,
634	which support the idea more H_2O is getting returned to the surface through
635	subduction zones than previously recognized.
636	
637	Acknowledgments
638	We thank Paul Carpenter for invaluable assistance with EPMA analyses at Washington
639	University in St. Louis. Additionally we are grateful to Tatiana Shishkina for thorough
640	discussion and to Hélène Couvy for her comprehensive assistance in lab work. Maxim
641	Portnyagin, Glenn Gaetani, Adam Kent, Thomas Sisson, and Michel Pichavant are

642	sincerely thanked for providing insightful comments and criticism, which helped us to
643	rethink some of our ideas and sharpened the discussion of the paper. Constructive
644	reviews from Matthew Steele-MacInnis, Michael Rowe and one anonymous reviewer
645	improved the clarity of our arguments and data presentation. We would like to thank
646	Kyle Ashley for his editorial handling of the manuscript. MG acknowledges support from
647	McDonnell Center for the Space Sciences. MK acknowledges support from US National
648	Science Foundation grant EAR 1654683. PR acknowledges support from US National
649	Science Foundation grant EAR 1719687. JGC acknowledges support from US National
650	Aeronautics and Space Administration grant NNX14AJ95G.
651	
652	References cited
653	Anderson, A.T. (1991) Hourglass inclusions: Theory and application to the Bishop
654	Rhyolitic Tuff. American Mineralogist, 76(1-2), 530-547.
655	Ariskin, A.A., Barmina, G.S., Ozerov, A.Y., and Nielsen, R.L. (1995) Genesis of high-
656	alumina basalts from Klyuchevskoi volcano. Petrology, 3(5), 449-472.
657	Auer, S., Bindeman, I., Wallace, P., Ponomareva, V., and Portnyagin, M. (2009) The
658	origin of hydrous, high- δ^{18} O voluminous volcanism: diverse oxygen isotope
659	values and high magmatic water contents within the volcanic record of
660	Klyuchevskoy volcano, Kamchatka, Russia. Contributions to Mineralogy and
661	Petrology, 157(2), 209-230, doi:10.1007/s00410-008-0330-0.
662	Ayers, J.C., Brenan, J.B., Watson, E.B., Wark, D.A., and Minarik, W.G. (1992) A new
663	capsule technique for hydrothermal experiments using the piston-cylinder
664	apparatus. American Mineralogist, 77(9-10), 1080-1086.

665	Baker, D.R., and Alletti, M. (2012) Fluid saturation and volatile partitioning between
666	melts and hydrous fluids in crustal magmatic systems: The contribution of
667	experimental measurements and solubility models. Earth-Science Reviews,
668	114(3-4), 298-324, doi:10.1016/j.earscirev.2012.06.005.
669	Baker, M.B., Grove, T.L., and Price, R. (1994) Primitive basalts and andesites from the
670	Mt. Shasta region, N. California: products of varying melt fraction and water
671	content. Contributions to Mineralogy and Petrology, 118(2), 111-129,
672	doi:10.1007/bf01052863.
673	Behrens, H., Misiti, V., Freda, C., Vetere, F., Botcharnikov, R.E., and Scarlato, P. (2009)
674	Solubility of H_2O and CO_2 in ultrapotassic melts at 1200 and 1250°C and pressure
675	from 50 to 500 MPa. American Mineralogist, 94(1), 105-120,
676	doi:10.2138/am.2009.2796.
677	Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W.,
678	and Koepke, J. (2002) A combined rapid-quench and H_2 -membrane setup for
679	internally heated pressure vessels: Description and application for water solubility
680	in basaltic melts. American Mineralogist, 87(11-12), 1717-1726, doi:10.2138/am-
681	2002-11-1222.
682	Bista, S., Stebbins, J.F., Hankins, W.B., and Sisson, T.W. (2015) Aluminosilicate melts
683	and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered
684	structural and density changes. American Mineralogist, 100(10), 2298-2307,
685	doi:10.2138/am-2015-5258.
686	Blundy, J., and Cashman, K. (2008) Petrologic Reconstruction of Magmatic System
687	Variables and Processes. Reviews in Mineralogy and Geochemistry, 69(1), 179-

688	239, doi:10.2138/rmg.2008.69.6.
689	Bonatti, E. (1965) Palagonite, hyaloclastites and alteration of volcanic glass in the ocean.
690	Bulletin Volcanologique, 28(1), 257-269, doi:10.1007/bf02596930.
691	Botcharnikov, R.E., Almeev, R.R., Koepke, J., and Holtz, F. (2008) Phase Relations and
692	Liquid Lines of Descent in Hydrous Ferrobasalt—Implications for the Skaergaard
693	Intrusion and Columbia River Flood Basalts. Journal of Petrology, 49(9), 1687-
694	1727, doi:10.1093/petrology/egn043.
695	Bouvet de Maisonneuve, C., Dungan, M.A., Bachmann, O., and Burgisser, A. (2012)
696	Insights into shallow magma storage and crystallization at Volcán Llaima
697	(Andean Southern Volcanic Zone, Chile). Journal of Volcanology and
698	Geothermal Research, 211-212, 76-91, doi:10.1016/j.jvolgeores.2011.09.010.
699	Boyd, F.R., and England, J.L. (1960) Apparatus for phase-equilibrium measurements at
700	pressures up to 50 kilobars and temperatures up to 1750°C. Journal of
701	Geophysical Research, 65(2), 741-748, doi:10.1029/JZ065i002p00741.
702	Brenan, J.M., Shaw, H.F., Phinney, D.L., and Ryerson, F.J. (1994) Rutile-aqueous fluid
703	partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength
704	element depletions in island-arc basalts. Earth and Planetary Science Letters,
705	128(3), 327-339, doi:10.1016/0012-821X(94)90154-6.
706	Brenan, J.M., Shaw, H.F., Ryerson, F.J., and Phinney, D.L. (1995) Mineral-aqueous fluid
707	partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace
708	element chemistry of mantle and deep crustal fluids. Geochimica et
709	Cosmochimica Acta, 59(16), 3331-3350, doi:10.1016/0016-7037(95)00215-L.
710	Bryant, J.A., Yogodzinski, G.M., and Churikova, T.G. (2007) Melt-mantle interactions

711	beneath the Kamchatka arc: Evidence from ultramafic xenoliths from Shiveluch
712	volcano. Geochemistry Geophysics Geosystems, 8 (4), Q04007,
713	doi:10.1029/2006gc001443.
714	Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N. (2013) Post-entrapment
715	modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions.
716	Earth and Planetary Science Letters, 374, 145-155,
717	doi:10.1016/j.epsl.2013.05.033.
718	Cai, C., Wiens, D.A., Shen, W., and Eimer, M. (2018) Water input into the Mariana
719	subduction zone estimated from ocean-bottom seismic data. Nature, 563(7731),
720	389-392, doi:10.1038/s41586-018-0655-4.
721	Carmichael, I.S. (2002) The andesite aqueduct: perspectives on the evolution of
722	intermediate magmatism in west-central (105-99°W) Mexico. Contributions to
723	Mineralogy and Petrology, 143(6), 641-663, doi:10.1007/s00410-002-0370-9.
724	Carroll, M.R., and Stolper, E.M. (1993) Noble gas solubilities in silicate melts and
725	glasses: New experimental results for argon and the relationship between
726	solubility and ionic porosity. Geochimica et Cosmochimica Acta, 57(23), 5039-
727	5051, doi:10.1016/0016-7037(93)90606-W.
728	Cashman, K.V. (2004) Volatile Controls on Magma Ascent and Eruption. The State of
729	the Planet: Frontiers and Challenges in Geophysics, 150, p. 109-124. American
730	Geophysical Union.
731	Chen, Y., Provost, A., Schiano, P., and Cluzel, N. (2011) The rate of water loss from
732	olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology,
733	162(3), 625-636, doi:10.1007/s00410-011-0616-5.

734	Chertkova, N., and Yamashita, S. (2015) In situ spectroscopic study of water speciation
735	in the depolymerized Na ₂ Si ₂ O ₅ melt. Chemical Geology, 409, 149-156,
736	doi:10.1016/j.chemgeo.2015.05.012.
737	Churikova, T., Wörner, G., Mironov, N., and Kronz, A. (2007) Volatile (S, Cl and F) and
738	fluid mobile trace element compositions in melt inclusions: implications for
739	variable fluid sources across the Kamchatka arc. Contributions to Mineralogy and
740	Petrology, 154(2), 217-239, doi:10.1007/s00410-007-0190-z.
741	Cooper, L.B., Plank, T., Arculus, R.J., Hauri, E.H., Hall, P.S., and Parman, S.W. (2010)
742	High-Ca boninites from the active Tonga Arc. Journal of Geophysical Research:
743	Solid Earth, 115(B10), B10206, doi:10.1029/2009JB006367.
744	Cottrell, E., and Kelley, K.A. (2011) The oxidation state of Fe in MORB glasses and the
745	oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3-
746	4), 270-282, doi:10.1016/j.epsl.2011.03.014.
747	Dahm, T. (2000) On the shape and velocity of fluid-filled fractures in the Earth.
748	Geophysical Journal International, 142(1), 181-192, doi:10.1046/j.1365-
749	246x.2000.00148.x.
750	Danyushevsky, L.V., McNeill, A.W., and Sobolev, A.V. (2002) Experimental and
751	petrological studies of melt inclusions in phenocrysts from mantle-derived
752	magmas: an overview of techniques, advantages and complications. Chemical
753	Geology, 183(1-4), 5-24, doi:10.1016/S0009-2541(01)00369-2.
754	de Moor, J.M., Fischer, T.P., King, P.L., Botcharnikov, R.E., Hervig, R.L., Hilton, D.R.,
755	Barry, P.H., Mangasini, F., and Ramirez, C. (2013) Volatile-rich silicate melts
756	from Oldoinyo Lengai volcano (Tanzania): Implications for carbonatite genesis

757	and eruptive behavior. Earth and Planetary Science Letters, 361, 379-390,
758	doi:10.1016/j.epsl.2012.11.006.
759	Demouchy, S., Jacobsen, S.D., Gaillard, F., and Stern, C.R. (2006) Rapid magma ascent
760	recorded by water diffusion profiles in mantle olivine. Geology, 34(6), 429-432,
761	doi:10.1130/g22386.1.
762	Deubener, J., Müller, R., Behrens, H., and Heide, G. (2003) Water and the glass
763	transition temperature of silicate melts. Journal of Non-Crystalline Solids, 330(1),
764	268-273, doi:10.1016/S0022-3093(03)00472-1.
765	Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D., and Rutherford, M.J. (1995)
766	Comparison of microanalytical methods for estimating H ₂ O contents of silicic
767	volcanic glasses. American Mineralogist, 80(3-4), 319-328, doi:10.2138/am-
768	1995-3-413.
769	Di Carlo, I.D.A., Pichavant, M., Rotolo, S.G., and Scaillet, B. (2006) Experimental
770	Crystallization of a High-K Arc Basalt: the Golden Pumice, Stromboli Volcano
771	(Italy). Journal of Petrology, 47(7), 1317-1343, doi:10.1093/petrology/egl011.
772	Di Genova, D., Vasseur, J., Hess, KU., Neuville, D.R., and Dingwell, D.B. (2017)
773	Effect of oxygen fugacity on the glass transition, viscosity and structure of silica-
774	and iron-rich magmatic melts. Journal of Non-Crystalline Solids, 470, 78-85,
775	doi:10.1016/j.jnoncrysol.2017.05.013.
776	Dingwell, D.B., and Webb, S.L. (1990) Relaxation in silicate melts. European Journal of
777	Mineralogy, 2(4), 427-449, doi:10.1127/ejm/2/4/0427.
778	Erdmann, M., and Koepke, J. (2016) Silica-rich lavas in the oceanic crust: experimental
779	evidence for fractional crystallization under low water activity. Contributions to

780	Mineralogy and Petrology, 171(10), 83, doi:10.1007/s00410-016-1294-0.
781	Esposito, R., Lamadrid, H.M., Redi, D., Steele-MacInnis, M., Bodnar, R.J., Manning,
782	C.E., De Vivo, B., Cannatelli, C., and Lima, A. (2016) Detection of liquid H ₂ O in
783	vapor bubbles in reheated melt inclusions: Implications for magmatic fluid
784	composition and volatile budgets of magmas? American Mineralogist, 101(7),
785	1691-1695, doi:10.2138/am-2016-5689.
786	Ferguson, D.J., Gonnermann, H.M., Ruprecht, P., Plank, T., Hauri, E.H., Houghton, B.F.,
787	and Swanson, D.A. (2016) Magma decompression rates during explosive
788	eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments. Bulletin of
789	Volcanology, 78(10), 1-12, doi:10.1007/s00445-016-1064-x.
790	Fischer, T.P., and Marty, B. (2005) Volatile abundances in the sub-arc mantle: insights
791	from volcanic and hydrothermal gas discharges. Journal of Volcanology and
792	Geothermal Research, 140(1-3), 205-216, doi:10.1016/j.jvolgeores.2004.07.022.
793	Földvári, M. (2011) Handbook of Thermogravimetric System of Minerals and Its Use in
794	Geological Practice. 179 p. Geological Institute of Hungary (=Magyar Állami
795	Földtani Intézet).
796	Frezzotti, ML. (2001) Silicate-melt inclusions in magmatic rocks: applications to
797	petrology. Lithos, 55(1), 273-299, doi:10.1016/S0024-4937(00)00048-7
798	Gaetani, G.A., O'Leary, J.A., Shimizu, N., Bucholz, C.E., and Newville, M. (2012)
799	Rapid reequilibration of H ₂ O and oxygen fugacity in olivine-hosted melt
800	inclusions. Geology, 40(10), 915-918, doi:10.1130/g32992.1.
801	Gaetani, G.A., and Watson, E.B. (2000) Open system behavior of olivine-hosted melt
802	inclusions. Earth and Planetary Science Letters, 183(1-2), 27-41,

803	doi:10.1016/S0012-821X(00)00260-0.
804	Gavrilenko, M., Herzberg, C., Vidito, C., Carr, M.J., Tenner, T., and Ozerov, A. (2016a)
805	A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone
806	Magmatism. Journal of Petrology, 57(9), 1811-1832,
807	doi:10.1093/petrology/egw062.
808	Gavrilenko, M., Ozerov, A., Kyle, P.R., Carr, M.J., Nikulin, A., Vidito, C., and
809	Danyushevsky, L. (2016b) Abrupt transition from fractional crystallization to
810	magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bulletin of
811	Volcanology, 78:47, doi:10.1007/s00445-016-1038-z.
812	GEOROC, 2018. Geochemistry of rocks of the Oceans and Continents. MPI für Chemie,
813	Mainz, Germany. http://georoc.mpch-mainz.gwdg.de/georoc/.
814	Gordeychik, B., Churikova, T., Kronz, A., Sundermeyer, C., Simakin, A., and Wörner, G.
815	(2018) Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas
816	from Shiveluch volcano. Scientific Reports, 8(1), 11775, doi:10.1038/s41598-
817	018-30133-1.
818	Grove, T., Elkins-Tanton, L., Parman, S., Chatterjee, N., Müntener, O., and Gaetani, G.
819	(2003) Fractional crystallization and mantle-melting controls on calc-alkaline
820	differentiation trends. Contributions to Mineralogy and Petrology, 145(5), 515-
821	533, doi:10.1007/s00410-003-0448-z.
822	Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkins-Tanton, L.T., Chatterjee, N.,
823	and Müntener, O. (2005) Magnesian andesite and dacite lavas from Mt. Shasta,
824	northern California: products of fractional crystallization of H2O-rich mantle
825	melts. Contributions to Mineralogy and Petrology, 148(5), 542-565,

826	doi:10.1007/s00410-004-0619-6.
827	Grove, T.L., Chatterjee, N., Parman, S.W., and Médard, E. (2006) The influence of H_2O
828	on mantle wedge melting. Earth and Planetary Science Letters, 249(1-2), 74-89,
829	doi:10.1016/j.epsl.2006.06.043.
830	Grove, T.L., Till, C.B., and Krawczynski, M.J. (2012) The Role of H ₂ O in Subduction
831	Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40(1), 413-
832	439, doi:10.1146/annurev-earth-042711-105310.
833	Guggenheim, S., and van Groos, A.F.K. (2001) Baseline Studies of the Clay Minerals
834	Society Source Clays: Thermal Analysis. Clays and Clay Minerals, 49(5), 433-
835	443, doi:10.1346/CCMN.2001.0490509.
836	Guillot, B., and Sarda, P. (2006) The effect of compression on noble gas solubility in
837	silicate melts and consequences for degassing at mid-ocean ridges. Geochimica et
838	Cosmochimica Acta, 70(5), 1215-1230, doi:10.1016/j.gca.2005.11.007.
839	Guillot, B., and Sator, N. (2012) Noble gases in high-pressure silicate liquids: A
840	computer simulation study. Geochimica et Cosmochimica Acta, 80, 51-69,
841	doi:10.1016/j.gca.2011.11.040.
842	Hacker, B.R. (2008) H ₂ O subduction beyond arcs. Geochemistry, Geophysics,
843	Geosystems, 9(3), Q03001, doi:10.1029/2007GC001707.
844	Hacker, B.R., Abers, G.A., and Peacock, S.M. (2003) Subduction factory 1. Theoretical
845	mineralogy, densities, seismic wave speeds, and H2O contents. Journal of
846	Geophysical Research: Solid Earth, 108(B1), doi:10.1029/2001JB001127.
847	Hamilton, D.L., Burnham, C.W., and Osborn, E.F. (1964) The Solubility of Water and
848	Effects of Oxygen Fugacity and Water Content on Crystallization in Mafic

849	Magmas. Journal of Petrology, 5(1), 21-39, doi:10.1093/petrology/5.1.21.
850	Hartley, M.E., Maclennan, J., Edmonds, M., and Thordarson, T. (2014) Reconstructing
851	the deep CO ₂ degassing behaviour of large basaltic fissure eruptions. Earth and
852	Planetary Science Letters, 393, 120-131, doi:10.1016/j.epsl.2014.02.031.
853	Hartley, M.E., Neave, D.A., Maclennan, J., Edmonds, M., and Thordarson, T. (2015)
854	Diffusive over-hydration of olivine-hosted melt inclusions. Earth and Planetary
855	Science Letters, 425, 168-178, doi:10.1016/j.epsl.2015.06.008.
856	Hauri, E. (2002) SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances
857	in Hawaiian melt inclusions. Chemical Geology, 183(1-4), 115-141,
858	doi:10.1016/S0009-2541(01)00374-6.
859	Hauri, E., Wang, J., Dixon, J.E., King, P.L., Mandeville, C., and Newman, S. (2002)
860	SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and
861	comparisons with FTIR. Chemical Geology, 183(1), 99-114, doi:10.1016/S0009-
862	2541(01)00375-8.
863	Herzberg, C.T., Fyfe, W.S., and Carr, M.J. (1983) Density constraints on the formation of
864	the continental Moho and crust. Contributions to Mineralogy and Petrology,
865	84(1), 1-5, doi:10.1007/bf01132324.
866	Holtz, F., Sato, H., Lewis, J., Behrens, H., and Nakada, S. (2005) Experimental Petrology
867	of the 1991–1995 Unzen Dacite, Japan. Part I: Phase Relations, Phase
868	Composition and Pre-eruptive Conditions. Journal of Petrology, 46(2), 319-337,
869	doi:10.1093/petrology/egh077.
870	Hughes, E.C., Buse, B., Kearns, S.L., Blundy, J.D., Kilgour, G., and Mader, H.M. (2019)
871	Low analytical totals in EPMA of hydrous silicate glass due to sub-surface

872	charging: Obtaining accurate volatiles by difference. Chemical Geology, 505, 48-
873	56, doi:10.1016/j.chemgeo.2018.11.015.
874	Humphreys, M.C.S., Kearns, S.L., and Blundy, J.D. (2006) SIMS investigation of
875	electron-beam damage to hydrous, rhyolitic glasses: Implications for melt
876	inclusion analysis. American Mineralogist, 91(4), 667-679,
877	doi:10.2138/am.2006.1936.
878	Humphreys, M.C.S., Menand, T., Blundy, J.D., and Klimm, K. (2008) Magma ascent
879	rates in explosive eruptions: Constraints from H ₂ O diffusion in melt inclusions.
880	Earth and Planetary Science Letters, 270(1), 25-40,
881	doi:10.1016/j.epsl.2008.02.041.
882	Ihinger, P.D., Hervig, R.L., and McMillan, P.F. (1994) Analytical methods for volatiles
883	in glasses. Reviews in Mineralogy and Geochemistry, 30(1), 67-121.
884	Imae, N., and Ikeda, Y. (2007) Petrology of the Miller Range 03346 nakhlite in
885	comparison with the Yamato-000593 nakhlite. Meteoritics & Planetary Science,
886	42(2), 171-184, doi:10.1111/j.1945-5100.2007.tb00225.x.
887	Ionov, D.A. (2010) Petrology of Mantle Wedge Lithosphere: New Data on Supra-
888	Subduction Zone Peridotite Xenoliths from the Andesitic Avacha Volcano,
889	Kamchatka. Journal of Petrology, 51(1-2), 327-361,
890	doi:10.1093/petrology/egp090.
891	Johnson, E.R., Wallace, P.J., Cashman, K.V., Granados, H.D., and Kent, A.J.R. (2008)
892	Magmatic volatile contents and degassing-induced crystallization at Volcán
893	Jorullo, Mexico: Implications for melt evolution and the plumbing systems of
894	monogenetic volcanoes. Earth and Planetary Science Letters, 269(3-4), 478-487,

895	doi:10.1016/j.epsl.2008.03.004.
896	Katz, R.F., Spiegelman, M., and Langmuir, C.H. (2003) A new parameterization of
897	hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9), 1073,
898	doi:10.1029/2002GC000433.
899	Kayzar, T.M., Nelson, B.K., Bachmann, O., Bauer, A.M., and Izbekov, P.E. (2014)
900	Deciphering petrogenic processes using Pb isotope ratios from time-series
901	samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka
902	Depression. Contributions to Mineralogy and Petrology, 168: 1067,
903	doi:10.1007/s00410-014-1067-6.
904	Kent, A.J.R. (2008) Melt Inclusions in Basaltic and Related Volcanic Rocks. Reviews in
905	Mineralogy and Geochemistry, 69(1), 273-331, doi:10.2138/rmg.2008.69.8.
906	King, P.L., Vennemann, T.W., Holloway, J.R., Hervig, R.L., Lowenstern, J.B., and
907	Forneris, J.F. (2002) Analytical techniques for volatiles: A case study using
908	intermediate (andesitic) glasses. American Mineralogist, 87(8-9), 1077-1089,
909	doi:10.2138/am-2002-8-904.
910	Knowlton, G.D., White, T.R., and McKague, H.L. (1981) Thermal study of types of
911	water associated with clinoptilolite. Clays & Clay Minerals, 29(5), 403-411,
912	doi:10.1346/CCMN.1981.0290510.
913	Kohn, S.C., Henderson, C.M.B., and Mason, R.A. (1989) Element zoning trends in
914	olivine phenocrysts from a supposed primary high-magnesian andesite: an
915	electron- and ion-microprobe study. Contributions to Mineralogy and Petrology,
916	103(2), 242-252, doi:10.1007/bf00378510.
917	Krawczynski, M.J., Grove, T.L., and Behrens, H. (2012) Amphibole stability in primitive

918	arc magmas: effects of temperature, H ₂ O content, and oxygen fugacity.
919	Contributions to Mineralogy and Petrology, 164(2), 317-339,
920	doi:10.1007/s00410-012-0740-x.
921	Kumamoto, K.M., Warren, J.M., and Hauri, E.H. (2017) New SIMS reference materials
922	for measuring water in upper mantle minerals. American Mineralogist, 102(3),
923	537-547, doi:10.2138/am-2017-5863CCBYNCND.
924	Lees, J.M., Symons, N., Chubarova, O., Gorelchik, V., and Ozerov, A. (2007)
925	Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity. Volcanism and
926	Subduction: The Kamchatka Region, p. 293-302. American Geophysical Union.
927	Levin, V., Droznina, S., Gavrilenko, M., Carr, M.J., and Senyukov, S. (2014) Seismically
928	active subcrustal magma source of the Klyuchevskoy volcano in Kamchatka,
929	Russia. Geology, 42(11), 983-986, doi:10.1130/g35972.1.
930	Lloyd, A., Plank, T., Ruprecht, P., Hauri, E., and Rose, W. (2013) Volatile loss from melt
931	inclusions in pyroclasts of differing sizes. Contributions to Mineralogy and
932	Petrology, 165(1), 129-153, doi:10.1007/s00410-012-0800-2.
933	Lloyd, A.S., Ruprecht, P., Hauri, E.H., Rose, W., Gonnermann, H.M., and Plank, T.
934	(2014) NanoSIMS results from olivine-hosted melt embayments: Magma ascent
935	rate during explosive basaltic eruptions. Journal of Volcanology and Geothermal
936	Research, 283, 1-18, doi:10.1016/j.jvolgeores.2014.06.002.
937	Maclennan, J. (2017) Bubble formation and decrepitation control the CO ₂ content of
938	olivine-hosted melt inclusions. Geochemistry, Geophysics, Geosystems, 18(2),
939	597-616, doi:10.1002/2016GC006633.
940	Massare, D., Métrich, N., and Clocchiatti, R. (2002) High-temperature experiments on

941	silicate melt inclusions in olivine at 1 atm: inference on temperatures of
942	homogenization and H ₂ O concentrations. Chemical Geology, 183(1-4), 87-98,
943	doi:10.1016/S0009-2541(01)00373-4.
944	McGary, R.S., Evans, R.L., Wannamaker, P.E., Elsenbeck, J., and Rondenay, S. (2014)
945	Pathway from subducting slab to surface for melt and fluids beneath Mount
946	Rainier. Nature, 511(7509), 338-340, doi:10.1038/nature13493.
947	McMillan, P.F. (1994) Water solubility and speciation models. Reviews in Mineralogy
948	and Geochemistry, 30(1), 132-156.
949	Métrich, N., Allard, P., Spilliaert, N., Andronico, D., and Burton, M. (2004) 2001 flank
950	eruption of the alkali- and volatile-rich primitive basalt responsible for Mount
951	Etna's evolution in the last three decades. Earth and Planetary Science Letters,
952	228(1), 1-17, doi:10.1016/j.epsl.2004.09.036.
953	Métrich, N., and Wallace, P.J. (2008) Volatile Abundances in Basaltic Magmas and Their
954	Degassing Paths Tracked by Melt Inclusions. Reviews in Mineralogy and
955	Geochemistry, 69(1), 363-402, doi:10.2138/rmg.2008.69.10.
956	Mielenz, R.C., Schieltz, N.C., and King, M.E. (1953) Thermogravimetric analysis of clay
957	and clay-like minerals. Clays and Clay Minerals(2), 285-314,
958	doi:10.1346/CCMN.1953.0020124.
959	Mironov, N., Portnyagin, M., Botcharnikov, R., Gurenko, A., Hoernle, K., and Holtz, F.
960	(2015) Quantification of the CO_2 budget and H_2O-CO_2 systematics in subduction-
961	zone magmas through the experimental hydration of melt inclusions in olivine at
962	high H ₂ O pressure. Earth and Planetary Science Letters, 425, 1-11,
963	doi:10.1016/j.epsl.2015.05.043.

964	Mironov, N.L., and Portnyagin, M.V. (2011) H ₂ O and CO ₂ in parental magmas of
965	Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine.
966	Russian Geology and Geophysics, 52(11), 1353-1367,
967	doi:10.1016/j.rgg.2011.10.007.
968	Mitchell, A.L., Gaetani, G.A., O'Leary, J.A., and Hauri, E.H. (2017) H ₂ O solubility in
969	basalt at upper mantle conditions. Contributions to Mineralogy and Petrology,
970	172(10), 85, doi:10.1007/s00410-017-1401-x.
971	Moore, D., and Reynolds Jr, R. (1997) X-Ray Diffraction and the Identification and
972	Analysis of Clay Minerals. 378 p. Oxford University Press, Oxford, New York.
973	Moore, G. (2008) Interpreting H ₂ O and CO ₂ Contents in Melt Inclusions: Constraints
974	from Solubility Experiments and Modeling. Reviews in Mineralogy and
975	Geochemistry, 69(1), 333-362, doi:10.2138/rmg.2008.69.9.
976	Moore, G., Vennemann, T., and Carmichael, I.S.E. (1998) An empirical model for the
977	solubility of H_2O in magmas to 3 kilobars. American Mineralogist, 83(1-2), 36-
978	42, doi:10.2138/am-1998-1-203.
979	Moore, L.R., Gazel, E., Tuohy, R., Lloyd, A.S., Esposito, R., Steele-MacInnis, M., Hauri,
980	E.H., Wallace, P.J., Plank, T., and Bodnar, R.J. (2015) Bubbles matter: An
981	assessment of the contribution of vapor bubbles to melt inclusion volatile budgets.
982	American Mineralogist, 100(4), 806-823, doi:10.2138/am-2015-5036.
983	Mysen, B. (2014) Water-melt interaction in hydrous magmatic systems at high
984	temperature and pressure. Progress in Earth and Planetary Science, 1(1), 4,
985	doi:10.1186/2197-4284-1-4.
986	Nash, W.P. (1992) Analysis of oxygen with the electron microprobe: Applications to

987	hydrated glass and minerals. American Mineralogist, 77(3-4), 453-457.
988	Newman, S., and Lowenstern, J.B. (2002) VolatileCalc: a silicate melt-H ₂ O-CO ₂
989	solution model written in Visual Basic for excel. Computers & Geosciences,
990	28(5), 597-604, doi:10.1016/S0098-3004(01)00081-4.
991	Nowak, M., and Behrens, H. (1995) The speciation of water in haplogranitic glasses and
992	melts determined by in situ near-infrared spectroscopy. Geochimica et
993	Cosmochimica Acta, 59(16), 3445-3450, doi:10.1016/0016-7037(95)00237-T.
994	Nye, C.J., and Reid, M.R. (1986) Geochemistry of primary and least fractionated lavas
995	from Okmok volcano, Central Aleutians: implications for arc magmagenesis.
996	Journal of Geophysical Research, 91(B10), 10271-10287,
997	doi:10.1029/JB091iB10p10271.
998	Ochs, F.A., and Lange, R.A. (1999) The Density of Hydrous Magmatic Liquids. Science,
999	283(5406), 1314-1317, doi:10.1126/science.283.5406.1314.
1000	Ozerov, A.Y. (2000) The evolution of high-alumina basalts of the Klyuchevskoy
1001	volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions.
1002	Journal of Volcanology and Geothermal Research, 95(1-4), 65-79,
1003	doi:10.1016/S0377-0273(99)00118-3.
1004	Ozerov, A.Y. (2009) Experimental modeling of the explosion mechanism of basaltic
1005	magmas. Petrology, 17(7), 653-668, doi:10.1134/s0869591109070029.
1006	Ozerov, A.Y., Ariskin, A.A., Kyle, P., Bogoyavlenskaya, G.E., and Karpenko, S.F.
1007	(1997) Petrological-geochemical model for genetic relationships between basaltic
1008	and andesitic magmatism of Klyuchevskoi and Bezymyannyi volcanoes,
1009	Kamchatka. Petrology, 5(6), 550-569.

1010	Paonita, A. (2005) Noble gas solubility in silicate melts:a review of experimentation and
1011	theory, and implications regarding magma degassing processes. Annals of
1012	Geophysics, 48(4-5), 647-669, doi:10.4401/ag-3225.
1013	Papale, P., Moretti, R., and Barbato, D. (2006) The compositional dependence of the
1014	saturation surface of H_2O+CO_2 fluids in silicate melts. Chemical Geology, 229(1),
1015	78-95, doi:10.1016/j.chemgeo.2006.01.013.
1016	Parai, R., and Mukhopadhyay, S. (2012) How large is the subducted water flux? New
1017	constraints on mantle regassing rates. Earth and Planetary Science Letters, 317-
1018	318, 396-406, doi:10.1016/j.epsl.2011.11.024.
1019	Peslier, A.H., Schönbächler, M., Busemann, H., and Karato, SI. (2017) Water in the
1020	Earth's Interior: Distribution and Origin. Space Science Reviews, 212(1), 743-
1021	810, doi:10.1007/s11214-017-0387-z.
1022	Petrelli, M., El Omari, K., Spina, L., Le Guer, Y., La Spina, G., and Perugini, D. (2018)
1023	Timescales of water accumulation in magmas and implications for short warning
1024	times of explosive eruptions. Nature Communications, 9(1), 770,
1025	doi:10.1038/s41467-018-02987-6.
1026	Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.H., and Wallace, P.J. (2013) Why do
1027	mafic arc magmas contain \sim 4 wt% water on average? Earth and Planetary
1028	Science Letters, 364, 168-179, doi:10.1016/j.epsl.2012.11.044.
1029	Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F. (2008) Experimental evidence for
1030	rapid water exchange between melt inclusions in olivine and host magma. Earth
1031	and Planetary Science Letters, 272(3-4), 541-552,
1032	doi:10.1016/j.epsl.2008.05.020.

1033	Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N., and Khubunaya, S. (2007)
1034	Constraints on mantle melting and composition and nature of slab components in
1035	volcanic arcs from volatiles (H ₂ O, S, Cl, F) and trace elements in melt inclusions
1036	from the Kamchatka Arc. Earth and Planetary Science Letters, 255(1-2), 53-69,
1037	doi:10.1016/j.epsl.2006.12.005.
1038	Pozgay, S.H., Wiens, D.A., Conder, J.A., Shiobara, H., and Sugioka, H. (2009) Seismic
1039	attenuation tomography of the Mariana subduction system: Implications for
1040	thermal structure, volatile distribution, and slow spreading dynamics.
1041	Geochemistry, Geophysics, Geosystems, 10(4), Q04X05, doi:
1042	10.1029/2008GC002313.
1043	Qin, Z., Lu, F., and Anderson, A.T. (1992) Diffusive reequilibration of melt and fluid
1044	inclusions. American Mineralogist, 77(5-6), 565-576.
1045	Rivalta, E., Taisne, B., Bunger, A.P., and Katz, R.F. (2015) A review of mechanical
1046	models of dike propagation: Schools of thought, results and future directions.
1047	Tectonophysics, 638, 1-42, doi:10.1016/j.tecto.2014.10.003.
1048	Rubin, A.M. (1993) Tensile fracture of rock at high confining pressure: Implications for
1049	dike propagation. Journal of Geophysical Research: Solid Earth, 98(B9), 15919-
1050	15935, doi:doi:10.1029/93JB01391.
1051	Ruprecht, P., and Plank, T. (2013) Feeding andesitic eruptions with a high-speed
1052	connection from the mantle. Nature, 500(7460), 68-72, doi:10.1038/nature12342.
1053	Ruscitto, D.M., Wallace, P.J., and Kent, A.J.R. (2011) Revisiting the compositions and
1054	volatile contents of olivine-hosted melt inclusions from the Mount Shasta region:
1055	implications for the formation of high-Mg andesites. Contributions to Mineralogy

1056	and Petrology, 162(1), 109-132, doi:10.1007/s00410-010-0587-y.
1057	Rutherford, M.J., and Devine, J.D. (1996) Preeruption pressure-temperature conditions
1058	and volatiles in the 1991 dacitic magma of Mount Pinatubo. Fire and mud:
1059	eruptions and lahars of Mt. Pinatubo, Philippines, p. 751-766. USGS.
1060	Schiano, P. (2003) Primitive mantle magmas recorded as silicate melt inclusions in
1061	igneous minerals. Earth-Science Reviews, 63(1), 121-144, doi:10.1016/S0012-
1062	8252(03)00034-5.
1063	Schiano, P., and Bourdon, B. (1999) On the preservation of mantle information in
1064	ultramafic nodules: glass inclusions within minerals versus interstitial glasses.
1065	Earth and Planetary Science Letters, 169(1), 173-188, doi:10.1016/S0012-
1066	821X(99)00074-6.
1067	Shishkina, T.A. (2012) Storage conditions and degassing processes of low-K and high-Al
1068	tholeiitic island-arc magmas: experimental constraints and natural observations
1069	for Mutnovsky volcano, Kamchatka. Naturwissenschaftliche Fakultät, Ph.D., p.
1070	214. Leibniz Universität Hannover, Hannover.
1071	Shishkina, T.A., Botcharnikov, R.E., Holtz, F., Almeev, R.R., Jazwa, A.M., and
1072	Jakubiak, A.A. (2014) Compositional and pressure effects on the solubility of
1073	H ₂ O and CO ₂ in mafic melts. Chemical Geology, 388, 112-129,
1074	doi:10.1016/j.chemgeo.2014.09.001
1075	Shishkina, T.A., Botcharnikov, R.E., Holtz, F., Almeev, R.R., and Portnyagin, M.V.
1076	(2010) Solubility of H_2O - and CO_2 -bearing fluids in tholeiitic basalts at pressures
1077	up to 500 MPa. Chemical Geology, 277(1-2), 115-125,
1078	doi:10.1016/j.chemgeo.2010.07.014.

1079	Silver, L., and Stolper, E. (1989) Water in Albitic Glasses. Journal of Petrology, 30(3),
1080	667-709, doi:10.1093/petrology/30.3.667.
1081	Sommer, M.A. (1977) Volatiles H ₂ O, CO ₂ , and CO in Silicate Melt Inclusions in Quartz
1082	Phenocrysts from the Rhyolitic Bandelier Air-Fall and Ash-Flow Tuff, New
1083	Mexico. The Journal of Geology, 85(4), 423-432, doi:10.1086/628316.
1084	Steele-Macinnis, M., Esposito, R., and Bodnar, R.J. (2011) Thermodynamic Model for
1085	the Effect of Post-entrapment Crystallization on the H2O-CO2 Systematics of
1086	Vapor-saturated, Silicate Melt Inclusions. Journal of Petrology, 52(12), 2461-
1087	2482, doi:10.1093/petrology/egr052.
1088	Steele-MacInnis, M., Esposito, R., Moore, L.R., and Hartley, M.E. (2017)
1089	Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive
1090	magmatic volatile contents. Contributions to Mineralogy and Petrology, 172(4),
1091	18, doi:10.1007/s00410-017-1343-3.
1092	Stolper, E. (1982a) The speciation of water in silicate melts. Geochimica et
1093	Cosmochimica Acta, 46(12), 2609-2620, doi:10.1016/0016-7037(82)90381-7.
1094	Stolper, E. (1982b) Water in silicate glasses: An infrared spectroscopic study.
1095	Contributions to Mineralogy and Petrology, 81(1), 1-17, doi:10.1007/bf00371154.
1096	Straub, S.M., LaGatta, A.B., Martin-Del Pozzo, A.L., and Langmuir, C.H. (2008)
1097	Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for
1098	orogenic andesites from the central Mexican Volcanic Belt. Geochemistry,
1099	Geophysics, Geosystems, 9(3), Q03007, doi:10.1029/2007GC001583.
1100	Straub, S.M., and Layne, G.D. (2003) The systematics of chlorine, fluorine, and water in
1101	Izu arc front volcanic rocks: Implications for volatile recycling in subduction

1102	zones. Geochimica et Cosmochimica Acta, 67(21), 4179-4203,
1103	doi:10.1016/S0016-7037(03)00307-7.
1104	Streck, M.J., and Leeman, W.P. (2018) Petrology of "Mt. Shasta" high-magnesian
1105	andesite (HMA): A product of multi-stage crustal assembly. American
1106	Mineralogist, 103(2), 216-240, doi:10.2138/am-2018-6151.
1107	Stroncik, N.A., and Schmincke, HU. (2002) Palagonite – a review. International Journal
1108	of Earth Sciences, 91(4), 680-697, doi:10.1007/s00531-001-0238-7.
1109	Taisne, B., and Jaupart, C. (2011) Magma expansion and fragmentation in a propagating
1110	dyke. Earth and Planetary Science Letters, 301(1), 146-152,
1111	doi:10.1016/j.epsl.2010.10.038.
1112	Tolstykh, M.L., Naumov, V.B., Gavrilenko, M.G., Ozerov, A.Y., and Kononkova, N.N.
1113	(2012) Chemical composition, volatile components, and trace elements in the
1114	melts of the Gorely volcanic center, southern Kamchatka: Evidence from
1115	inclusions in minerals. Geochemistry International, 50(6), 522-550,
1116	doi:10.1134/S0016702912060079.
1117	van Keken, P.E., Hacker, B.R., Syracuse, E.M., and Abers, G.A. (2011) Subduction
1118	factory: 4. Depth-dependent flux of H ₂ O from subducting slabs worldwide.
1119	Journal of Geophysical Research: Solid Earth, 116(B1),
1120	doi:10.1029/2010JB007922.
1121	Wallace, P.J. (2005) Volatiles in subduction zone magmas: concentrations and fluxes
1122	based on melt inclusion and volcanic gas data. Journal of Volcanology and
1123	Geothermal Research, 140(1-3), 217-240, doi:10.1016/j.jvolgeores.2004.07.023.
1124	Wallace, P.J., Kamenetsky, V.S., and Cervantes, P. (2015a) Melt inclusion CO ₂ contents,

1125	pressures of olivine crystallization, and the problem of shrinkage bubbles.
1126	American Mineralogist, 100(4), 787-794, doi:10.2138/am-2015-5029.
1127	Wallace, P.J., Plank, T., Edmonds, M., and Hauri, E.H. (2015b) Chapter 7 - Volatiles in
1128	Magmas. In H. Sigurdsson, Ed. The Encyclopedia of Volcanoes (Second Edition),
1129	p. 163-183. Academic Press, Amsterdam, doi:10.1016/B978-0-12-385938-
1130	9.00007-9.
1131	Walowski, K., Wallace, P., Cashman, K., Marks, J. K., Clynne, M., Ruprecht, P. (in
1132	review) Understanding melt evolution and eruption dynamics of the 1666 C.E.
1133	eruption of Cinder Cone, Lassen Volcanic National Park, California: Insights
1134	from olivine- hosted melt inclusions. Journal of Volcanology and Geothermal
1135	Research.
1136	Wanamaker, B.J., Wong, TF., and Evans, B. (1990) Decrepitation and crack healing of
1137	fluid inclusions in San Carlos olivine. Journal of Geophysical Research: Solid
1138	Earth, 95(B10), 15623-15641, doi:10.1029/JB095iB10p15623.
1139	Weller, D.J., and Stern, C.R. (2018) Along-strike variability of primitive magmas (major
1140	and volatile elements) inferred from olivine-hosted melt inclusions, southernmost
1141	Andean Southern Volcanic Zone, Chile. Lithos, 296-299, 233-244,
1142	doi:10.1016/j.lithos.2017.11.009.
1143	Zellmer, G.F., Edmonds, M., and Straub, S.M. (2015) Volatiles in subduction zone
1144	magmatism. Geological Society, London, Special Publications, 410(1), 1-17,
1145	doi:10.1144/sp410.13.
1146	Zellmer, G.F., Pistone, M., Iizuka, Y., Andrews, B.J., Gómez-Tuena, A., Straub, S.M.,
1147	and Cottrell, E. (2016) Petrogenesis of antecryst-bearing arc basalts from the

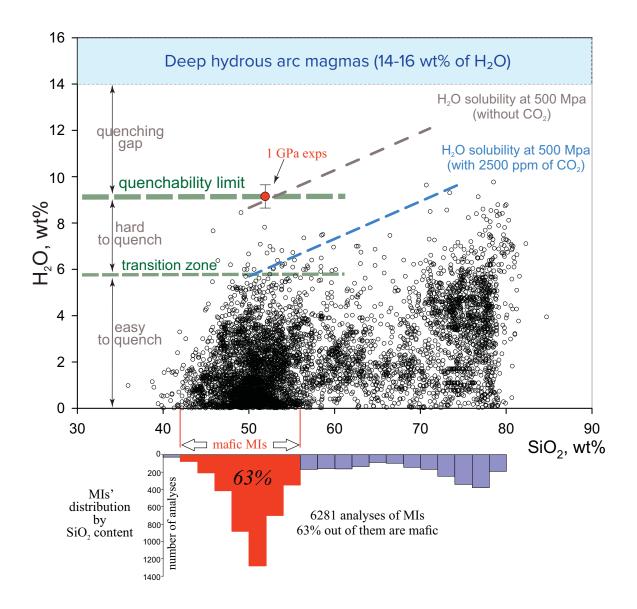
1148	Trans-Mexican Volcanic Belt: Insights into along-arc variations in magma-mush
1149	ponding depths, H ₂ O contents, and surface heat flux. American Mineralogist,
1150	101(11), 2405-2422, doi:10.2138/am-2016-5701.
1151	Zhang, H.L., Hirschmann, M.M., Cottrell, E., and Withers, A.C. (2017) Effect of pressure
1152	on Fe ³⁺ / Σ Fe ratio in a mafic magma and consequences for magma ocean redox
1153	gradients. Geochimica et Cosmochimica Acta, 204, 83-103,
1154	doi:10.1016/j.gca.2017.01.023.
1155	Zhang, Y. (1998) Mechanical and phase equilibria in inclusion-host systems. Earth and
1156	Planetary Science Letters, 157(3), 209-222, doi:10.1016/S0012-821X(98)00036-
1157	3.
1158	Zimmer, M.M., Plank, T., Hauri, E.H., Yogodzinski, G.M., Stelling, P., Larsen, J.,
1159	Singer, B., Jicha, B., Mandeville, C., and Nye, C.J. (2010) The Role of Water in
1160	Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and
1161	a New Tholeiitic Index. Journal of Petrology, 51(12), 2411-2444,
1162	doi:10.1093/petrology/egq062.
1163	
1164	Figure Captions
1165	
1166	Figure 1. Measured H_2O variations in melt inclusions with different bulk compositions.
1167	Major element compositions of the melt inclusions are normalized to an anhydrous basis,
1168	and SiO ₂ is plotted. H ₂ O concentrations range up to 8-9 wt% (bold dashed green line).
1169	Experimental results showing the maximum possible H ₂ O content in a mafic glass (this
1170	study) are shown with a red circle (1- σ error bars). Quenched glassy melt inclusions have

1171	not been found with high water contents (14-16 wt% of H_2O), which have been suggested
1172	by some petrological and geochemical studies (for example, Carmichael 2002; Fischer
1173	and Marty 2005; Krawczynski et al. 2012). Dashed grey and blue lines are H ₂ O solubility
1174	limits for 500 MPa having no CO_2 (grey line) and having 2500 ppm of CO_2 provided by
1175	the model reported in Shishkina et al. (2014). MI data (6300 analyses) are from the
1176	GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc). The histogram at the
1177	bottom panel illustrates the distribution of studied MIs by SiO2 content showing the
1178	abundance of mafic MIs in the global compilation due to numerous studies of primitive
1179	magmas.
1180	
1181	Figure 2. The variations of cooling rates (green and red thin lines) during quenching of
1182	the experiments. The experimental quench rates at the glass transition temperatures (solid
1183	circles) are higher than natural cooling rates for MIs in 2 cm lapilli (grey hatching)
1184	determined by Lloyd et al. (2013). Glass transition temperatures (solid circles) are
1185	calculated for every experimental melt composition using Deubener et al. (2003).
1186	
1187	Figure 3. The comparison of natural and experimental temperature drop during
1188	quenching. The experimental quench rates (green and red thin lines) are very close to
1188 1189	quenching. The experimental quench rates (green and red thin lines) are very close to cooling rates of natural glasses (black and blue thick lines). Blue thick lines show the
1189	cooling rates of natural glasses (black and blue thick lines). Blue thick lines show the

52

1193	a cooling rate for MIs from in ash particles. The glass transition temperatures (solid
1194	circles) are determined as in Figure 2.

- 1195
- 1196 Figure 4. H₂O content in products of 1 GPa experiments. Red diamonds show EPMA
- 1197 data, yellow circles TGA measurements (1-σ error bars). Crossed symbols are from
- 1198 experiments with isobaric quench. Mafic compositions have a limit for incorporation of
- 1199 H₂O in the quenched glass structure, which is significantly lower than H₂O solubility at 1
- 1200 GPa for basaltic melt (Mitchell et al. 2017). The green line represents the quenchability
- 1201 limit for mafic compositions.
- 1202
- 1203 Figure 5. Texture changing with increasing pre-loaded H₂O contents. The amount of
- 1204 preloaded H₂O increases from left to right, in wt%. See text for discussion.
- 1205
- 1206 Figure 6. Powder XRD patterns of products from the three experiments. Asterisks (*)
- 1207 indicate a periclase (MgO) contaminant from the experimental assembly. Patterns F091
- and F098 have been offset vertically for clarity.
- 1209
- 1210 Figure 7. (left) Low-angle region of powder XRD patterns of the experimental products,
- 1211 highlighting phyllosilicate basal reflections. (right) Phyllosilicate (060) features, with the
- 1212 gray band indicating a d-spacing range of 1.525 to 1.545 Å. Patterns F091 and F098 have
- 1213 been offset vertically for clarity.
- 1214


- 1215 **Figure 8.** SEM images of the non-glassy run products a) F071, b) F091, c) F098,
- 1216 mainly consisting of phyllosilicates (having flaky appearance) in comparison with the
- 1217 glassy one d) F099.

1218

- 1219 Figure 9. Pressure-drop during the quenching period of hydrous experiments at 1 GPa
- 1220 and 1.5 GPa. The pressure for each experiment at the point when it crossed the estimated
- 1221 glass transition temperature was always at least 50-100 MPa above 0.5 GPa which is
- 1222 where ~ 9 wt% would be the H₂O solubility in a basaltic melt (e.g. Shishkina et al. 2010;
- 1223 Shishkina 2012 and references within). The glass transition temperatures (solid circles)
- are determined as in Figure 2.

1225

Figure 1.

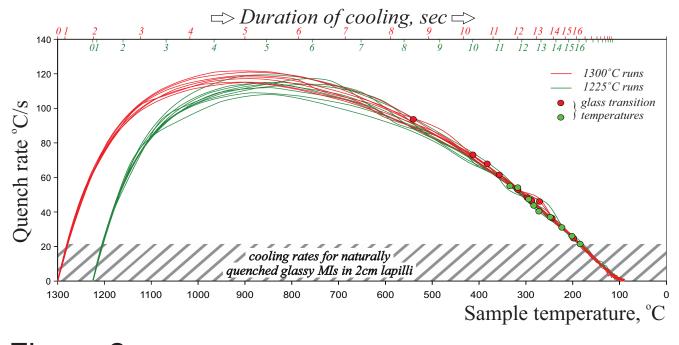
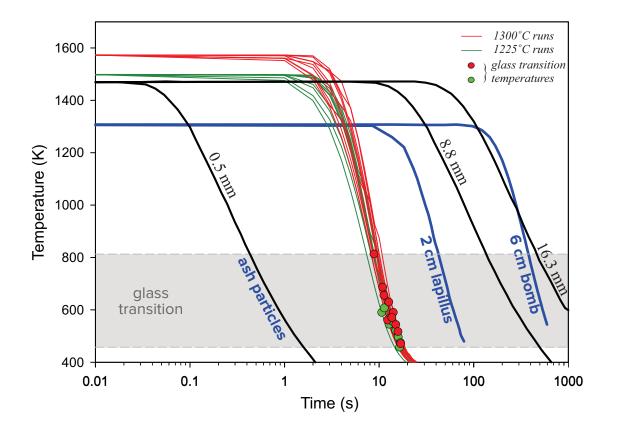
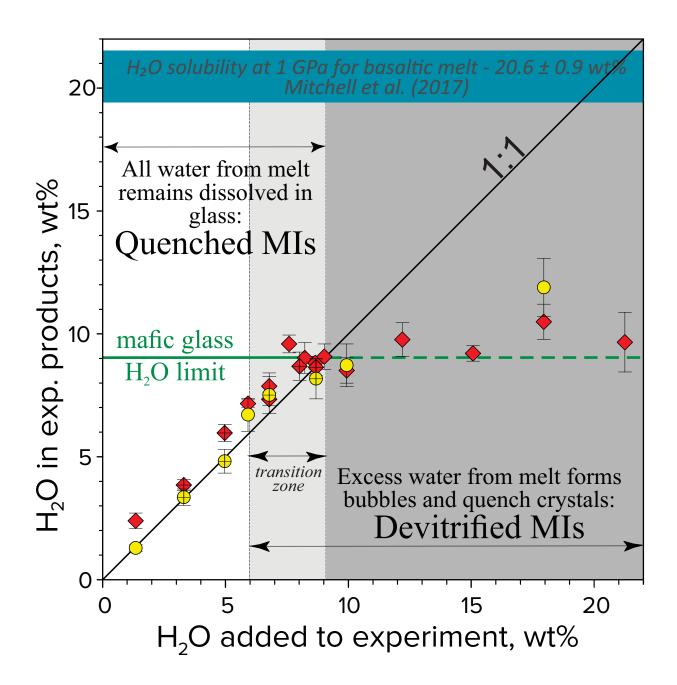
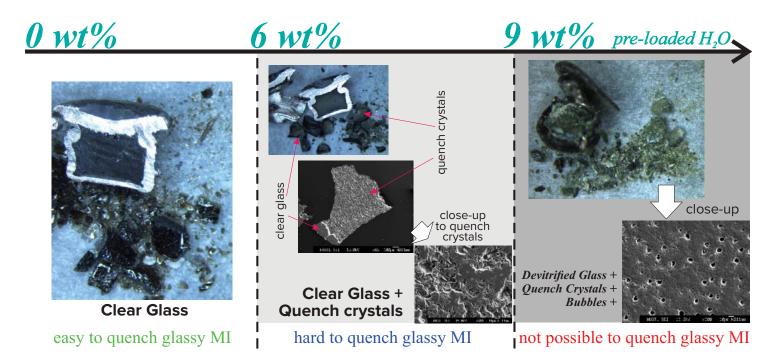


Figure 2.


Figure 3.

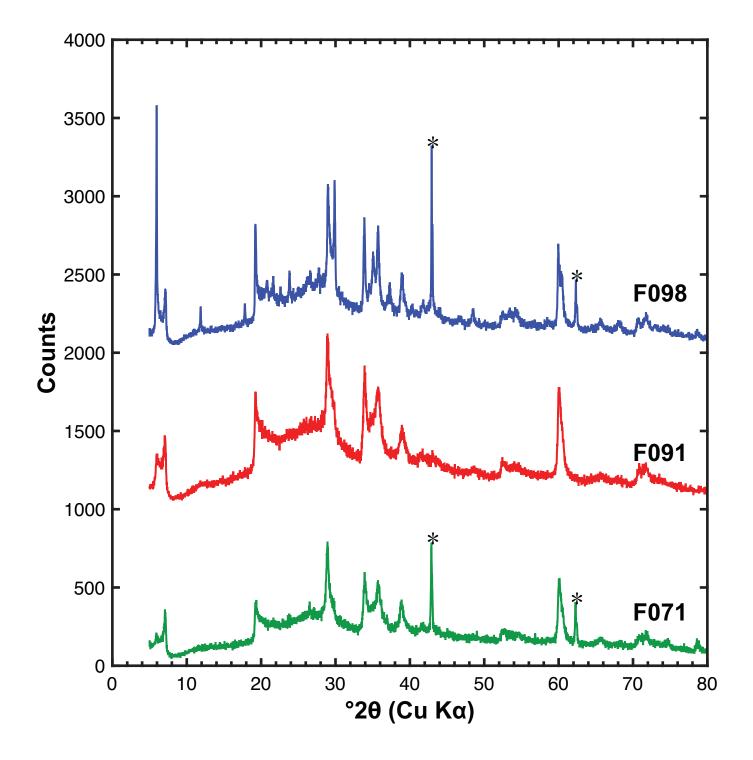

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6735

Figure 4.

Figure 5.

Figure 6.

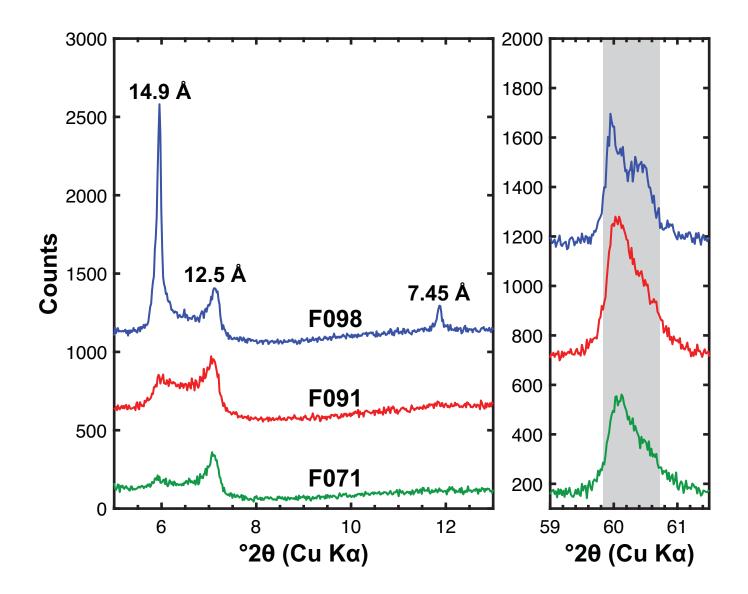
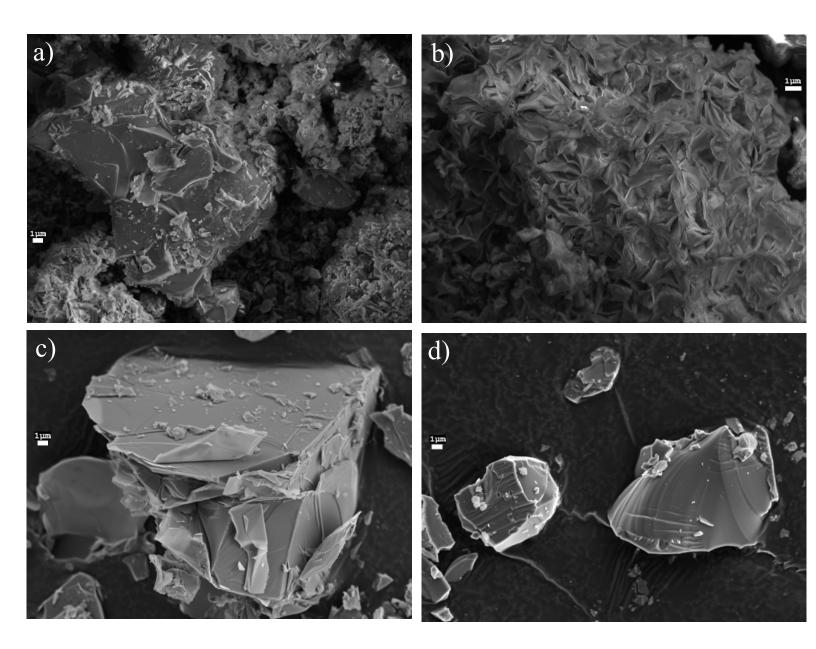



Figure 7.

Figure 8.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

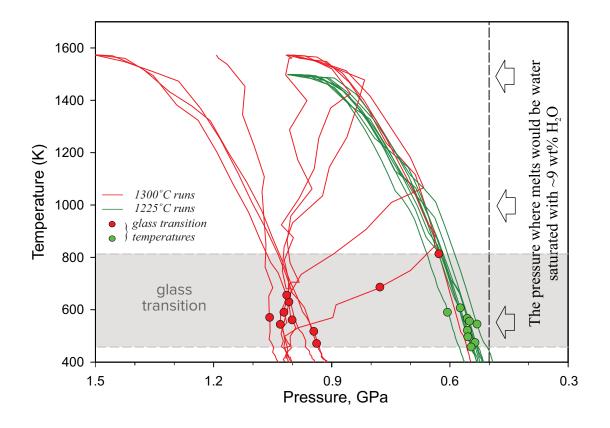


Figure 9.

Table 1. Glass starting material for experiments in oxide weight percents measured by EPMA.

Starting material	n	SiO ₂ ^a		TiO₂		Al ₂ O ₃	3	FeO		MnO		MgO		CaO		Na₂O		K₂O		Total	Mg#
mafic (85-44)	40	51.12	0.85	0.61	0.03	16.58	0.18	7.84	0.24	0.059	0.015	10.43	0.14	9.28	0.08	2.24	0.06	0.39	0.02	98.55	70.3

n - number of probe analyses.

^a Columns directly following the oxide wt% are 2-σ errors (standard deviation) from replicate analyses.

Temp., Pressure, pr			pre-loaded	Duration,			– %
Run	°C	GPa	H ₂ O, wt.%	hours	Phases ^a	% ΔFe ^b	Tg, ℃
F068	1225	1.0	8.7	16	vesicular glass and QC (96) + olivine (4)	-8.4	288
F069	1225	1.0	12.2	16	vesicular glass, QC, and alteration products	-5.6	248
F070	1225	1.0	15.1	16	vesicular glass, QC, and alteration products	-2.9	223
F071	1225	1.0	18.0	14	vesicular glass, QC, and alteration products	-2.9	202
F073	1225	1.0	8.2	16	vesicular glass, QC, and alteration products	-1.2	294
F074	1225	1.0	9.9	16	vesicular glass, QC, and alteration products	-0.6	272
F075	1225	1.0	7.6	16	glass, vesicular glass, QC, and alteration products	0.0	304
F076	1225	1.0	6.8	16	glass (94), QC, + olivine (6)	1.9	317
F079	1225	1.0	5.9	16	glass and rare QC	-1.1	334
F080	1225	1.0	9.0	16	vesicular glass, QC, and alteration products	-0.7	283
F083	1225	1.0	21.3	16	vesicular glass, QC, and alteration products	0.4	184
F085	1300	1.0	1.3	10	glass (88) + pyroxene (12)	-1.4	540
F087	1300	1.0p	3.3	10	glass (?) + pyroxene (?)	1.4	413
F088	1300	1.0p	5.0	10	glass	0.8	357
F089	1300	1.0p	6.8	10	glass + QC	0.7	317
F090	1300	1.0p	8.7	10	vesicular glass, QC, and alteration products	3.1	288
F091	1300	1.0p	10.0	10	vesicular glass, QC, and alteration products		271
F097	1300	1.5	18.5	10	vesicular glass, QC, and alteration products	-3.9	198
F098	1300	1.5	12.6	10	vesicular glass, QC, and alteration products	-2.1	244
F099	1300	1.5	4.1	10	glass (?) + pyroxene (?)	2.4	383
F106	1300	1.0p	8.0	10	glass, QC, and alteration products	-1.6	297
F107	1300	1.0p	12.2	10	vesicular glass, QC, and alteration products		248

 Table 2. Run conditions and products for hydrous supra-liquidus experiments for 85-44 composition.

^a in parentheses phases abundances in percent, calculated by mass balance.

^b percent of relative Fe loss or gain from the starting material based on the difference between the starting material and calculated bulk composition of experiment using a linear regression mass balance.

"1.0p" - p means that pressure was maintained during quenching due to active pumping.

Tg - calculated the glass transition temperature based on pre-loaded H₂O content and algorithm from Deubener et al. (2003).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6735

Table 3. EPMA and TGA analyses of experimental run products in oxide weight percent.

Bun	Phase	-	c:o ª		TiO₂		Al ₂ O ₃		FeO		MnO		MaQ		CaO		Na₂O		K₂O	Tota		pre-loaded	measu	ed H ₂ O	, wt%
Run	Phase	n	SiO ₂ ^a				AI ₂ O ₃		FeO		MINO		MgO		CaU		Na ₂ O		R ₂ 0		Total	H ₂ O, wt.%	by-differ	enceª	TGA
F068	BBQM	47	47.69	1.10	0.57	0.04	17.07	0.57	6.50	0.27	0.05	0.02	8.18	0.26	9.08	0.33	1.52	0.26	0.52	0.10	91.18	8.65	8.81	0.52	
	olivine	23	40.63	0.46	0.01	0.02	0.02	0.03	11.24	0.32	0.07	0.02	47.83	0.66	0.12	0.03	0.00	0.01	0.00	0.01	99.93				
F069	BBQM	16	47.15	0.73	0.55	0.05	16.34	0.27	6.77	0.21	0.06	0.02	9.26	0.19	8.58	0.44	1.23	0.52	0.30	0.17	90.23	12.20	9.76	1.37	
F070	BBQM	32	47.28	0.64	0.56	0.04	16.76	0.56	6.94	0.23	0.05	0.02	8.48	0.18	8.81	0.28	1.45	0.26	0.46	0.15	90.79	15.07	9.20	0.63	
F071	BBQM	38	46.01	1.13	0.57	0.03	15.10	0.35	6.89	0.38	0.05	0.02	9.37	0.54	8.70	0.75	2.47	0.87	0.35	0.13	89.50	17.96	10.49	1.44	11.88
F073	glass	30	47.41	0.83	0.56	0.04	15.74	0.13	7.17	0.34	0.05	0.02	9.33	0.39	8.57	0.19	1.70	0.35	0.45	0.07	90.98	8.23	9.01	1.25	
F074	BBQM	30	46.86	1.10	0.57	0.04	16.03	0.38	7.23	0.39	0.06	0.03	9.65	0.48	8.74	0.21	1.85	0.33	0.48	0.09	91.48	9.93	8.51	1.03	8.71
F075	glass	20	47.15	0.75	0.57	0.05	15.84	0.11	7.18	0.46	0.05	0.02	8.85	0.46	8.62	0.25	1.69	0.10	0.45	0.04	90.41	7.59	9.59	0.72	
F076	glass	25	48.20	1.05	0.60	0.03	16.38	0.30	7.47	0.32	0.05	0.02	7.66	0.61	9.31	0.37	2.07	0.21	0.39	0.06	92.12	6.78	7.87	1.08	
	olivine	8	41.11	0.53	0.00	0.01	0.03	0.01	9.06	1.11	0.06	0.02	50.37	0.82	0.11	0.02	0.00	0.01	0.01	0.01	100.75				
F079	glass	30	47.98	0.76	0.57	0.04	15.58	0.24	7.55	0.45	0.06	0.02	9.91	0.42	8.79	0.23	2.02	0.17	0.36	0.04	92.83	5.92	7.16	0.30	6.70
F080	BBQM	26	47.41	0.82	0.55	0.04	15.49	0.73	7.25	0.25	0.05	0.02	9.40	0.80	8.68	0.25	1.70	0.13	0.39	0.05	90.92	9.03	9.07	1.03	
F083	BBQM	23	46.61	1.22	0.55	0.04	15.29	0.42	7.14	0.18	0.05	0.02	9.44	0.33	8.78	0.57	2.01	0.71	0.46	0.15	90.33	21.25	9.66	2.43	
F085	glass	16	50.79	0.66	0.65	0.04	17.45	0.43	7.69	0.34	0.06	0.03	7.94	0.62	10.06	0.18	2.53	0.07	0.43	0.02	97.61	1.35	2.39	0.62	1.28
	pyroxene	10	52.92	1.15	0.10	0.03	6.15	0.89	7.62	0.41	0.06	0.02	31.19	0.58	1.67	0.13	0.06	0.02	0.01	0.01	99.77				
F087	glass	20	50.16	0.96	0.59	0.04	16.19	0.15	7.76	0.58	0.06	0.03	9.67	0.30	9.19	0.29	2.16	0.12	0.37	0.03	96.15	3.31	3.84	0.46	3.34
F088	glass	20	49.05	0.75	0.58	0.04	15.75	0.21	7.54	0.25	0.05	0.03	9.67	0.31	8.91	0.14	2.10	0.07	0.36	0.03	94.03	4.97	5.96	0.71	4.81
F089	glass	20	48.47	0.64	0.56	0.04	15.47	0.31	7.42	0.59	0.05	0.02	9.55	0.61	8.75	0.31	2.01	0.27	0.35	0.04	92.65	6.78	7.33	0.53	7.51
F090	BBQM	25	47.62	1.02	0.57	0.03	15.32	0.29	7.49	0.55	0.05	0.03	9.44	0.58	8.86	0.24	1.54	0.17	0.46	0.06	91.35	8.68	8.64	0.68	8.17
F097	BBQM	14	45.75	0.86	0.55	0.05	14.85	0.31	6.70	0.45	0.05	0.03	9.09	0.74	9.03	0.44	1.35	0.22	0.22	0.06	87.58	18.47	12.38	1.03	
F098	BBQM	14	46.04	1.30	0.53	0.03	14.99	0.42	6.81	0.26	0.04	0.03	8.48	0.50	8.69	0.48	1.56	0.42	0.34	0.20	87.48	12.63	12.50	1.88	
F099	glass	16	48.78	0.91	0.61	0.05	16.37	0.21	7.68	0.50	0.04	0.03	8.96	0.37	9.22	0.34	2.19	0.14	0.38	0.04	94.23	4.11	5.75	0.79	4.40
F106	glass	15	47.99	0.93	0.57	0.05	15.55	0.27	7.15	0.43	0.04	0.03	9.33	0.69	8.60	0.33	1.72	0.17	0.36	0.05	91.31	8.01	8.68	1.15	

n - number of probe analyses.

^a Columns directly following the oxide wt.% are 2-σ errors (standard deviation) from replicate analyses. "BBQM" refers to 'broad beam analysis of quench-material'

Table 4: Volatile element concentrations determined by secondary ion mass spectrometry

Sample ^{\$}		H ₂ O (wt.%)	2SD	CO ₂ (ppm)	2SD	F (ppm)	2SD	P (ppm)	2SD	S (ppm)	2SD	Cl (ppm)	2SD
F099 F087	n=3 n=3	3.93 2.53	0.42 0.11	575 461	41 21	29 24	3.2 1	74 68	1.9 2	66 156	0.8 7	33 27	1.0 1
MR:ND-70-01 ^a FR:ND-60-01 ^b	n=11 n=10	1.06 1.41	0.04 0.04			120 154	6.2 6.9	374 445	6.4 5.4	913 43	22.3 0.6	246 872	13.2 29.7
Suprasil ^c	n=7	0.0029	0.0009			14	4.2	0.8	1.1	5.3	5.0	1100	135

a Preferred values for MR:ND-70-01 are 1.0 wt.% H2O, 80 ppm CO₂, 150 ppm F, 382 ppm P, 888 ppm S, 198 ppm Cl.

No CO₂ concentrations calculated, because this glass was used for calibration.

b Preferred values for FR:ND-60-01 are 1.42 wt.% H2O, 2.7 ppm CO₂, 208 ppm F, 461 ppm P, 42.1 ppm S, 720 ppm Cl.

No CO₂ concentrations calculated, because this glass was used for calibration.

c Suprasil provides estimates for limits of detection for all elements except CO₂ (high background) and Cl (high co**ncentration**)

 $Calibration curves (except for CO_2) used ALV-519-4-1, ALV-1833-11, ALV-1846-12, ALV-1833-1.$