Revision #1

1	The Effect of Coordination Changes on the Bulk Moduli of
2	Amorphous Silicates: The SiO ₂ -TiO ₂ System as a Test Case
3	Quentin Williams ¹ , Murli H. Manghnani ² , Teruyuki Matsui ³
4	¹ Dept. of Earth and Planetary Sciences, University of California, Santa Cruz,
5	California, 95064 USA
6	² Hawaii Institute of Geophysics & Planetology, University of Hawaii, Honolulu, HI
7	96822 USA
8	³ Knowledge Outsourcing Co., Inc, Nagoya, Japan
9	Abstract
10	The elasticity of a sequence of SiO_2 -TiO ₂ glasses is examined at high pressures and
11	temperatures. A primary goal is to determine how the previously proposed
12	substitution of 5-fold coordinate Ti at low concentrations of Ti and 4-fold coordinate
13	Ti at higher concentrations affects the elastic properties of these glasses. The effect
14	of changing Ti content on the bulk moduli of these glasses is monotonic, and no
15	systematic effect of possible coordination changes is observed. In contrast, there is
16	an apparent decrease in the pressure derivative of the bulk modulus above ${\sim}3$ wt%
17	TiO_2 . This change occurs at a similar composition to that at which a transition from
18	predominantly 5-fold to 4-fold of Ti has been proposed to occur in these glasses.
19	Hence, this shift in the pressure derivative of the bulk modulus is attributed to a
20	stiffening of the equation of state of these glasses generated by the substitution of 5-
21	fold Ti species relative to TiO $_4$ units. Our results provide rationales for the onset of
22	coordination changes producing a minimal change in the equation of state of silicate

23	melts/glasses, and for bulk moduli determined at ambient pressure producing
24	relatively accurate silicate melt volumes even within liquids that have begun to
25	undergo coordination changes. Thus, our results support the general validity of
26	single equation of state formulations that describe the densities of silicate melts
27	through the transition zone and shallow upper mantle.

29 Introduction

30 The densities of silicate melts at high pressures are of pivotal importance for 31 a range of geophysical issues involving the differentiation and chemical evolution of 32 the Earth. Densities of silicate melts at high pressures govern whether melts rise or 33 sink at depth, with associated upward or downward transport of incompatible 34 elements. And, the relationship between the pressure-dependence of the densities 35 of melts and the shape of the melting curves of materials plays, via the Clausius-36 Clapeyron equation, a pivotal role in determining how magma oceans solidify (e.g., 37 Andrault et al., 2011; Boukare et al., 2015). The densification of silicate melts at 38 depth within Earth's transition zone and shallow upper mantle has long been 39 recognized to hinge on coordination changes within network-forming components 40 such as Si and Al, from 4-fold to higher coordinations (e.g., Waff, 1975; Williams and 41 Jeanloz, 1988; Yarger et al., 1995; Farber and Williams, 1996; Stixrude and Karki, 42 2005). Despite these now well-documented coordination changes under pressure, 43 the elastic properties of melts measured at ambient or low pressures (in a pressure 44 range where few highly coordinated Si and Al atoms are anticipated to be present 45 (e.g., Xue et al., 1991; Allwardt et al., 2005) are in fairly good accord with the

46	densities of liquids at conditions under which coordination changes almost certainly
47	have begun to occur within liquids. Specifically, the compaction of silicate liquids
48	under either static or shock loading into pressure ranges of 10's of GPa (e.g., Rigden
49	et al., 1989; Miller et al., 1993; Asimow and Ahrens, 2010; Thomas et al., 2012;
50	Sanloup et al., 2013)—a range that is associated with coordination changes
51	(typically, from four- to five- or six-fold) of network-forming cations within the
52	liquid structureis, perhaps counter-intuitively, reasonably well predicted from
53	ambient pressure ultrasonic data on silicate liquids, which show that silicate liquids
54	have typical ambient pressure bulk moduli of 17-23 GPa (e.g., Manghnani et al.,
55	1986; Rivers and Carmichael, 1987; Secco et al., 1991; Ai and Lange, 2008). This
56	similarity raises the fundamental question: what is the effect of highly coordinated
57	species on the elasticity of silicate liquids in particular, and amorphous silicates in
58	general?
59	A straightforward means of evaluating the precise effect of coordination
60	changes on the elastic behavior of amorphous silicates involves making accurate
61	elastic measurements on a simple system in which a shift in coordination is well
62	documented. Previous measurements of elasticity of glasses under pressure (e.g.,
63	Sanchez-Valle and Bass, 2010; Liu and Lin, 2014) have not readily constrained the
64	precise interplay between complex, ill-constrained shifts in coordination (e.g., Fukui
65	and Hiroaka, 2018) and elasticity. In contrast to the multiple coordination
66	environments likely to be generated under compression, relatively well-
67	characterized changes in coordination induced by compositional changes at ambient
68	pressures can illuminate the degree to which a direct connection exists between

69	structural and elastic changes. In particular, titanium substitution in silica provides
70	a test case with which to understand this issue of primary geophysical relevance:
71	XANES spectroscopy by Henderson et al. (2002) has shown that glasses with up to
72	${\sim}3.6$ wt% TiO_2 on the SiO_2-TiO_2 join have titanium present predominantly in 5-fold
73	coordination, but four-fold Ti substitutes into these glasses at higher Ti
74	concentrations, although a small fraction of 5-fold Ti is reported to persist. Similarly,
75	Greegor et al. (1983) proposed, based on XANES and EXAFS that substitution of Ti
76	into SiO_2 glass initially enters into the glass entirely in 6-fold coordination, but that
77	the onset of 4-fold coordination occurs below 1 wt% TiO ₂ ; Dingwell et al. (1994)
78	reinterpreted their observations as indicating higher coordination (probably 5-fold)
79	of Ti up to ${\sim}2$ wt% TiO_2, with 4-fold at higher concentrations. A theoretical XANES
80	study has suggested that the XANES peak assignments may differ from those utilized
81	by experimentalists (Tamura et al., 2012), but there are extensive studies of the
82	XANES of crystalline equivalents with known coordinations that validate the
83	experimental assignments (e.g., Greegor et al., 1983; Dingwell et al., 1994; Farges,
84	1997; Henderson et al., 2002). That TiO_2 at low concentrations enters into silica in
85	high coordination is also compatible with the behavior of Ti in a broad suite of
86	silicate glasses (Farges, 1997). Thus, our study is oriented towards determining
87	whether there is any variation in elastic properties of these glasses associated with
88	the shift of Ti-substitution from high coordination at low concentrations (2-3.6 wt $\%$
89	TiO ₂) to predominantly tetrahedral substitution at higher concentrations.
90	Five-fold coordination is predominantly associated, for typical magmatic
91	compositions, with the coordination of aluminum under higher pressure conditions

92	(e.g., Allwardt et al., 2005), although there is substantial observational and
93	theoretical evidence that five-fold silicon is of importance in magmatic compositions
94	at deep upper mantle and transition zone conditions (e.g., Xue et al., 1991; Stixrude
95	and Karki, 2005; Spera et al., 2011). Notably, glasses quenched to ambient
96	conditions from high pressure melts in the 10 GPa range typically contain less than
97	10% of five-fold or six-fold Si (Xue et al., 1991; Allwardt et al., 2004). Similarly, the
98	abundance of five-fold Si calculated to be present in $MgSiO_3$ liquid at transition zone
99	conditions peaks at 30-50% abundance, with lower concentrations of six-fold silicon
100	in this pressure range (Stixrude and Karki, 2005; Spera et al., 2011). Thus, the shift
101	in coordination associated with several percent of Ti substitution within the SiO $_2$ -
102	${\rm TiO_2}$ system can provide a test for how higher coordinated titanium ions affect the
103	elastic properties relative to tetrahedrally-coordinated Ti.
104	In this instance, we are deploying chemical variations, and their associated
105	shifts in coordination, as a proxy for the elastic effects of well-known pressure-
106	induced changes in coordination in amorphous materials (e.g., Williams and Jeanloz,
107	1988; Xue et al., 1991; Farber and Williams, 1996; Shim and Catalli, 2009; Murakami
108	and Bass, 2010; 2012). In particular, this system allows us to examine how the
109	(presumably) weaker Si-O-Ti $^{V-fold}$ linkages and more highly coordinated Ti ions
110	might impact the elasticity of glasses relative to Si-O-(Si,Ti) ^{IV-fold} linkages. While the
111	system we examine is highly polymerized (i.e., the non-bridging oxygens/number of
112	tetrahedral cations [NBO/T] ratio is nominally zero), it is notable that the NBO/T of
112	mid-ocean ridge basalt is ~ 0.8 (e.g. Bauchy et al. 2013) and the degree of

polymerization of initial network cations will increase as their coordination numberincreases.

116 The elastic properties of glasses and melts on the SiO_2 -TiO₂ binary are also of 117 interest for a variety of petrologic, geophysical, and materials science reasons. First, 118 end-member SiO_2 is the prototypical polymerized silicate, and its properties have 119 been utilized to derive insights into the properties of crustal granitic and rhyolitic 120 melts (e.g., Ghiorso, 2004). Second, how titanium, one of the few major elements 121 (along with aluminum) that appears to substitute readily into silicate networks, 122 alters the properties of silicate melts has been a topic of ongoing interest for the 123 petrologic community (e.g., Farges et al., 1996; Liu and Lange, 2001). Third, the 124 anomalous thermal and elastic properties of end-member silica (a negative thermal 125 expansion and a negative pressure dependence of its bulk modulus) may extend to 126 geologically relevant melts, and particularly those of granitic chemistry (Hushur et 127 al., 2013). Lastly, the negative (and near-zero) thermal expansion of SiO_2 -Ti O_2 128 glasses, coupled with desirable optical properties, has generated their usage in a 129 range of applications in which low thermal expansions are needed, including optical 130 coatings, waveguides and mirror substrates (e.g., Andreatch and McSkimin, 1976; 131 Karasinski et al., 2015; Efthimiopoulos et al., 2018). Indeed, it is these thermal 132 properties and associated materials applications that have resulted in the extensive 133 structural characterizations of glasses in this compositional system. 134 Here, we present an integrated study of the elasticity of a sequence of TiO₂-135 SiO₂ glasses at both ambient temperatures and high pressures, and high 136 temperatures at ambient pressure using ultrasonics, in order to probe the interplay

137	between the structure and elastic effects of titanium substitution into these silica-
138	rich amorphous materials. Our results at high temperature are complementary to
139	(but higher accuracy than) recent high-temperature studies using higher frequency
140	Brillouin spectroscopy on (mostly) sol-gel synthesized glasses in this compositional
141	system (Scannell et al., 2016), and cube resonance measurements made from 10-
142	300 K (Hirao et al., 1995). The elasticity of a single composition in the TiO_2 -SiO ₂
143	system (with 7.4 wt% TiO ₂) was measured by Andreatch and McSkimin (1974), but
144	to pressures of only 0.12 GPa: we remeasure an aliquot of similar composition (ULE
145	7971A) in this study to substantially higher pressures.
146	

147 **Experimental Methods**

148 The eight TiO_2 -SiO₂ glasses used in this study were prepared by the flame 149 hydrolysis boule process at the Corning Glass Works laboratory. The TiO₂ content of 150 the glasses ranges from 1.3 to 9.4 wt % (Table 1). An end-member fused silica 151 sample (Corning Code 7940) was also obtained from the Corning Glass Works. 152 Samples from the boules from which our starting materials were cut have been 153 compositionally characterized by X-ray fluorescence, with the accuracy of the 154 compositions being estimated as ±0.1 wt% (Schultz and Smyth, 1972). Flame 155 hydrolysis-synthesized glasses are deployed throughout this study: sol-gel glasses, 156 which are equilibrated at lower temperatures, have notably lower elastic moduli (by 157 1.1-2.4 GPa) relative to higher temperature flame-synthesized glasses (Scannell et 158 al., 2016). The glasses are optically clear, implying that no phase separation

159	occurred: such phase separation occurs at compositions containing >16.5 wt% TiO ₂ ,
160	and is characterized by the samples becoming translucent (e.g., Schultz, 1976).
161	The densities of the glass specimens were measured by the Archimedes
162	method, using distilled water. The density and velocity measurements were made
163	on the glasses both in an unannealed state, as well as after annealing: the annealed
164	results are presented here. The annealing process involved heating the glasses to
165	1020°C for about 1-1/2 hours, and then cooling them slowly from 1020 to 700°C at a
166	rate of 5° C/hour, and then allowing them to cool inside the furnace from 700°C to
167	room temperature. This process ensures that the glass has no detectable hydroxyl
168	contamination, which has been shown to strongly impact the sound velocities
169	(Scannell et al., 2016), and removes internal strains from the glasses.
170	The ultrasonic velocities were measured by the pulse super-position method
171	(a description of the apparatus utilized is given in Manghnani, 1972). Samples with
172	an acoustic path length of about 1 cm were employed. The two faces of the sample
173	were lapped flat within about 1 μm and parallel to within about 30 seconds of arc. X-
174	and Y-cut 20 MHz quartz transducers, 0.63 cm in diameter, were used for
175	compressional and shear wave velocity measurements, respectively. The sample
176	was pressurized with a two stage nitrogen gas pressure-intensifying system. Pulse
177	repetition frequencies were typically 200-500 KHz. The precision of the frequency f
178	measurements is ~ 1 part in 10 ⁵ . The phase angle correction, ($\gamma/360$) <i>f</i> , produced by
179	the bond between the transducer and the specimen, is negligible (γ does not exceed
180	2 degrees for a well prepared bond) and was ignored. For the high pressure
181	measurements, the sample densities were corrected using the ambient pressure

bulk moduli for each composition determined in this study: this accurately
simulates the density change over this limited pressure range. Densities in the hightemperature experiments were corrected using the thermal expansions determined
by Schultz and Smyth (1972) for glasses in this compositional system. The resultant
error in the velocity values reported here is considered to be less than 0.1%.

188 **Results and Discussion**

189 Figure 1 shows representative data taken under pressure on these glasses,

190 with results given for each glass in Table 1. Although the pressure range is

191 comparatively small, the accuracy of the data is high. The agreement of the pressure

dependences with the previous ultrasonic work (at a frequency of 40 MHz) to 0.14

193 GPa of Andreatch and McSkimin (1976) on a ~7.5 wt% TiO₂ glass are excellent (Fig.

194 1); our absolute values of velocity for a glass of similar composition are 47 m/sec

195 faster for compressional wave velocity and 28 m/sec for shear velocity (each are

196 ~0.8% different). Yet, the sample density reported by Andreatch and McSkimin

197 (1976) is slightly greater than that of our sample (by $\sim 0.6\%$), so the impedance of

198 the sample in the two studies is nearly identical.

As with silica glass and some haplogranitic compositions (e.g., Zha et al.,

200 1994; Hushur et al., 2013 Manghnani), the observed velocities decrease with

201 increasing pressure (Figure 1). This pressure-induced softening is generally viewed

as a consequence of the potential surface associated with the Si-O-Si bond angle, the

203 compaction of which is the primary means of low pressure compression (Huang and

Kieffer, 2004; Liang et al., 2007). The trends in moduli with composition as titania

205	are shown in Figure 2; titania weakly decreases the density of the glasses (Table 1),
206	but its effect on decreasing the compressibility of the glasses is substantially larger,
207	in accord with ultrasonic experiments on titanium-bearing alkali silicate melts (Liu
208	et al., 2007). This elastic softening is, to first-order, an entirely anticipated
209	consequence of introducing weaker Ti-O bonds (Henderson et al., 2002) and hence
210	broadened intertetrahedral angles into the structure through the incorporation of Ti
211	(Chandrasekhar et al., 1979; Scannell et al., 2016). However, despite Ti adopting 5-
212	fold coordination in the first few percent of substitution followed by 4-fold
213	coordination at higher concentrations (e.g., Dingwell et al., 1994; Henderson et al.,
214	2002; 2003), the trend of elasticity with composition is entirely monotonic. Within
215	the resolution of our data, no difference in trend can be resolved between glasses at
216	low Ti content and those at higher Ti content.
217	A notable aspect of the SiO ₂ -TiO ₂ system, beyond the extensive amount of
218	structural characterizations that have been conducted on glasses in this system, is
219	that the substitution mechanism for titanium into the polymerized silicate matrix is
220	fairly well-understood (e.g., Greegor et al., 1983; Dingwell et al., 1994; Henderson et
221	al., 2002; 2003). Unlike in alkali- or alkali-aluminous Ti-bearing glasses in which
222	there are interplays between the ratio of non-bridging oxygens to tetrahedral units
223	(NBO/T), and network-modifying cation environment and the local bonding
224	environment/coordination of titanium (e.g., Reynard and Webb, 1998; Liu et al.,
225	2007), the substitution of Ti into a fully polymerized glass (NBO/T of 0) has
226	straightforward structural consequences. Here, the substitution mechanism for

227 highly coordinated Ti (at low concentrations) involves the introduction of a five-fold 228 coordinate Ti, which is anticipated to have weakened Si-O-Ti linkages. 229 Figure 2 shows the change in bulk and shear moduli as a function of 230 composition. The bulk moduli from Ti-bearing flame-synthesized glasses 231 determined by GHz Brillouin spectroscopy (Scannell et al., 2016) are greater than 232 those determined in our MHz study, while the shear moduli are similar. The reasons 233 for these differences are unclear, but differences in sample annealing history and/or 234 the frequency of the probes may each play a role. 235 From a first-order elastic standpoint (Figure 2), the substitution of a five-fold 236 Ti at low Ti-contents appears to have an indistinguishable effect to adding a more 237 weakly bonded tetrahedral cation: or, phrased another way, the substitution of a 238 highly coordinated cation is effectively elastically silent relative to the same cation 239 substituting into a network site. This silence plausibly arises from the elastic effect 240 of the highly coordinated cation (which is likely more rigid than the Si-O-Si 241 network) being counter-balanced by the weakened, and thus more flexible, Si-O-Ti^{v-} 242 ^{fold} angles. 243 Unlike the bulk modulus, the pressure derivative of the bulk modulus 244 (dK/dP) may show a small, but measureable, signature of the structural change 245 associated with shifts in coordination of Ti (Figure 3). Here, although substituting Ti 246 into these glasses is anticipated to make them more compressible and lower their

247 dK/dP, the values of this parameter for low Ti glasses are nearly constant and near -

- 5.5. Samples more enriched in Ti (with dominantly four-fold coordination) have *K*'
- values that average near -5.9 (Figure 3), in accord with the expectation that such

250	glasses are more compressible under pressure. The notable aspect here is that a
251	change in speciation associated with a small quantity of Ti may produce an effect
252	that is resolvable on K': if this effect scales with the abundance of highly coordinated
253	cations, then the K' values of amorphous materials undergoing high-pressure
254	coordination changes could be markedly shifted. For comparison, the pressure
255	derivatives of the shear moduli are notably constant throughout this range: this
256	plausibly reflects that the shear modulus of these glasses is governed by the rigidity
257	of the tetrahedral network, which is likely minimally altered by Ti substitution. For
258	comparison, the bulk modulus reflects an averaged response of all of the structural
259	components within the glass, and particularly its weakest bonded (and Ti-
260	associated) components. Nevertheless, the key result here is that the pressure
261	derivative of the bulk modulus may vary in a manner that reflects the coordination
262	changes occurring within the glass, while the bulk modulus varies (within
263	resolution) in a constant manner irrespective of Ti coordination. It is probable that
264	titanium-bearing systems can provide other tests of this result. For example, glasses
265	in the Na_2O -Ti O_2 -Si O_2 system vary substantially in their ratio of five-fold to six-fold
266	titanium (Ponader et al., 1996), and such glasses have marked variations in their
267	pressure derivatives of bulk moduli (Manghnani, 1972). However, distinguishing the
268	elastic effects of shifting chemistry in ternary systems from those associated with
269	changes in coordination will require more extensive elastic (and probably
270	structural) data on different glass compositions than currently exists.
271	

The observation of little variation in bulk modulus associated with a possible structural change is in accord with the general observation that shock data on silicate liquids to transition zone and upper lower mantle conditions can be fit with ambient pressure ultrasonic values of the bulk moduli, with values of dK/dP being variable fit parameters (e.g., Miller et al., 1991; Asimow and Ahrens, 2010), and emphasizes that dK/dP is likely the pivotal determining factor in modeling the equations of state of silicate liquids through coordination changes.

279 **Pressure Dependence of Thermal Expansion**

280 In order to draw constraints on the pressure dependence of the thermal 281 expansion (α) of these glasses (d α /dP, which is equivalent to 1/ K^2 (dK/dT)), we also

282 measured the temperature dependence of the sound velocities (Figure 4). In

283 general, the temperature dependences of our results are slightly lower than those of

284 the two fusion-synthesized SiO₂-TiO₂ glasses measured at high temperatures using

285 Brillouin spectroscopy by Scannell et al. (2016).Modest elevations of longitudinal

velocities (but not shear, as is indicated in Figure 2) in Brillouin measurements

287 relative to ultrasonic measurements have been observed in silica glass (Vacher et al.,

288 1981) due to relaxational effects, and we speculate that such effects are enhanced by

temperature and could be responsible for the differences in temperature

dependence between the results of Scannell et al. (2016) and our own (Fig. 5).

As with the negative shifts of velocity under pressure, the temperature-

292 dependent velocities shift positively with increasing temperature. The

corresponding bulk moduli also markedly stiffen (Fig. 5). Here, it is apparent that

the values of the temperature derivatives of the moduli decrease with increases in

295	TiO_2 content. That is, the glasses become less anomalous in their thermal behavior
296	as titanium content increases, in contrast to the more anomalous behavior of glasses
297	richer in Ti under pressure. The detailed effects of annealing and temperature and
298	pressure on the Lamé parameters of glasses in this system will be discussed in a
299	later contribution.
300	The contributions to total change in the bulk modulus, K, due to temperature
301	effects can be considered in terms of intrinsic and extrinsic parts:
302	$dK = (\partial K / \partial T)_V dT + (\partial K / \partial V)_T dV $ (1)
303	Here, the first term on the right of Eqn. 1 involves intrinsic, temperature-induced,
304	changes to the bulk modulus, while the second term involves extrinsic changes
305	induced by volumetric shifts. Eqn. 1 can be rearranged as:
306	$(dK/dT)_{\rm P} = (\partial K/\partial T)_{\rm V} - \alpha K (\partial K/\partial P)_{\rm T} $ ⁽²⁾
307	Using the data in Tables 1 and 2, and thermal expansion coefficients from
308	Schultz and Smyth (1972), the intrinsic and extrinsic contributions to the
309	temperature-dependence of the moduli can be calculated. For all compositions, the
310	intrinsic portion is over 99% of the net temperature shift of the bulk modulus: this
311	dominance is largely a consequence of the low thermal expansion of these glasses.
312	Hence, the temperature-dependent moduli depend almost entirely on thermal, not
313	volumetric effects. Thus, there is a straightforward rationale for the differing
314	behavior of the trend of the temperature dependence of the moduli with
315	composition (becoming less anomalous) from the pressure dependence of the
316	moduli with composition (which become more anomalous, with more negative

317 dK/dP's), in that the former hinges on thermal effects, while the latter hinges on
318 volumetric effects.

319	Figure 6 shows estimated values of the change in thermal expansion with
320	pressure as a function of composition. There may be an indication that the low-Ti
321	compositional domain that is associated with 5-fold Ti coordination may have a
322	somewhat different trend than the rest of the glasses, but this effect is not well-
323	resolved. A novel aspect of Figure 6 is that it predicts that SiO_2 -TiO ₂ glasses should,
324	at modest pressures, have notably positive thermal expansions: that is, the near-
325	zero thermal expansions associated with these glasses at ambient pressure is a
326	fragile phenomenon that is removed by compaction.

327

328 Geophysical Implications

A long-standing question in the study of magmatic silicates under pressure is: How does one extrapolate the volume of a silicate liquid into a regime in which coordination changes become important for different network components? Like solids, does this structural change involve a discontinuity (smeared-out within the liquid) in volume and elastic properties? Or is the coordination transition not readily elastically detectable?

Our highly accurate low-pressure and high-temperature elastic results, on a system known to undergo a coordination change at ambient conditions, distinctly favor the coordination transition not being easily elastically detectable. The rationale for this outcome appears to be that, unlike in crystalline equivalents, introducing a highly coordinated cation into an amorphous material produces

additional structural changes, which includes the creation of weaker polyhedral
linkages. Thus, the net total elastic effects of the genesis of a highly coordinated
cation comprise a set of complex structural/bonding changes that, at least within
the TiO₂-SiO₂ system, appear to have little resolvable effect on the bulk modulus of
the material; however, an effect on the pressure derivative of the bulk modulus may
be generated.

346 The consequences of this observation are multi-fold. First, simulations of 347 silicate melts that incorporate a single equation of state are likely to be able to 348 accurately simulate the high pressure volumes and elasticity of silicate liquids as 349 coordination changes commence. Second, given an ambient pressure bulk modulus, 350 the pressure derivative of the bulk modulus may prove to be a key parameter in 351 assessing the density and elasticity of silicate melts within the transition zone and 352 shallow lower mantle. Third, because of the possible variation in the pressure 353 derivative of the bulk modulus that we observe as a function of cation coordination. 354 such derivatives should optimally be constrained *in situ* at pressure. 355 356 Acknowledgments. 357 We deeply appreciate the help of the late John Balogh in maintaining the facilities 358 and conducting these experiments. We are very thankful to Dr. Peter C. Schultz and 359 the Corning Glass Works for supplying the glass samples for this project, and two 360 reviewers for helpful comments. This work was supported by NSF grant 0757137

361 (to MHM) and NSF-EAR1620423 (to QW).

362

364 **References**

- Ai, Y., and Lange R.A. (2008) New acoustic velocity measurements on CaO-MgO-
- 366 Al₂O₃-SiO₂ liquids: Reevaluation of the volume and compressibility of CaMgSi₂O₆-
- 367 CaAl₂Si₂O₈ liquids to 25 GPa, *Journal of Geophysical Research*, *113*, B04203.
- 368 Allwardt, J.R., Schmidt, B.C., Stebbins, J.F. (2004) Structural mechanisms of
- 369 compression and decompression in high-pressure K₂Si₄O₉ glasses: An investigation
- 370 utilizing Raman and NMR spectroscopy of glasses and crystalline materials,
- 371 Chemical Geology, 213, 137-151.
- 372 Allwardt, J.R., Stebbins, J.F., Schmidt, B.C., Frost, D.J., Withers, A.C. and Hirschmann,
- 373 M.M. (2005) Aluminum coordination and the densification of high-pressure
- aluminosilicate glasses, *American Mineralogist*, *90*, 1218-1222.
- Andrault, D., et al. (2011) Solidus and liquidus profiles of chondritic mantle:
- 376 Implication for melting of the Earth across its history, *Earth and Planetary Science*
- 377 *Letters, 304,* 251-259.
- 378 Andreatch, P. and McSkimin, H.J. (1976) Pressure dependence of ultrasonic wave
- velocities and elastic stiffness moduli for a TiO₂-SiO₂ glass (Corning 7971), *Journal of*
- 380 *Applied Physics, 47,* 1299-1301.
- Asimow, P., and Ahrens, T.J. (2010) Shock compression of liquid silicates to 125 GPa:
- 382 The anorthite-diopside join, *Journal of Geophysical Research*, *115*, B10209.
- 383 Bauchy, M., Guillot, B., Micoulaut, M., and Sator, N. (2013) Viscosity and viscosity
- anomalies of model silicates and magmas: A numerical investigation, *Chemical*
- 385 *Geology, 346,* 47-56.

- Boukare, C.E., Ricard, Y. and Fiquet, G. (2015) Thermodynamics of the MgO-FeO-SiO₂
- 387 system up to 140 GPa: Application to the crystallization of Earth's magma ocean,
- 388 Journal of Geophysical Research, 120, 6085-6101.
- 389 Chandrasekhar, H.R., Chandrasekhar, M. and Manghnani, M.H. (1979) Phonons in
- titanium-doped vitreous silica, *Solid State Communications, 31*, 329-333.
- 391 Dingwell, D.B., Paris, E., Seifert, F., Mottana, A., and Romano, C. (1994) X-ray
- 392 absorption study of Ti-bearing silicate glass, *Physics and Chemistry of Minerals, 21*,
- 393 501-509.
- 394 Efthimiopoulos, I., et al., Femtosecond laser-induced transformations in ultra-low
- 395 expansion glass: Microstructure and local density variations by vibrational
- 396 spectroscopy, *Journal of Applied Physics*, *123*, 233105, 2018.
- 397 Farber, D.L., and Williams, Q. (1996) An in situ Raman spectroscopic study of
- 398 Na₂Si₂O₅ at high pressures and temperatures: Structures of compressed liquids and
- 399 glasses, American Mineralogist, 81, 273-283.
- 400 Farges, F. (1997) Coordination of Ti⁴⁺ in silicate glasses: A high resolution XANES
- 401 spectroscopy study at the Ti K-edge. *American Mineralogist, 82,* 36-43.
- 402 Farges, F., Brown, G.E., Navrotsky, A., Gan, H. and Rehr, J.J. (1996) Coordination
- 403 chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature
- 404 and pressure. *Geochimica et Cosmochimica Acta, 60,* 3039-3053.
- 405 Fukui, H., and Hiraoka N. (2018) Electronic and local atomistic structure of MgSiO₃
- 406 glass under pressure: A study of X-ray Raman scattering at the silicon and
- 407 magnesium L-edges, *Physics and Chemistry of Minerals, 45,* 211-218.

- 408 Ghiorso, M.S. (2004) An equation of state for silicate melts: Formulation of a general
- 409 model, *American Journal of Science, 304,* 637-678, 2004.
- 410 Gonzalez-Oliver, C.J.R., James, P.F. and Rawson, H. (1982) Silica and silica-titania
- 411 glasses prepared by the sol-gel process, Journal of Non-Crystalline Solids, 48, 129-
- 412 152.
- 413 Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P. (1983)
- 414 Investigation of TiO₂-SiO₂ glasses by X-ray absorption spectroscopy, *Journal of Non*-
- 415 *Crystalline Solids, 55,* 27-43.
- 416 Henderson, G.S., Liu, X., and Fleet, M.E. (2002) A Ti L-edge X-ray absorption study of
- 417 Ti-silicate glasses, *Physics and Chemistry of Minerals, 29,* 32-42.
- 418 Henderson, G.S., Liu, X., and Fleet, M.E. (2003) Titanium coordination in silicate
- 419 glasses investigated using O K-edge X-ray absorption spectroscopy, *Mineralogical*
- 420 *Magazine, 67,* 597-607.
- 421 Hirao, K., Tanaka, K., Furukawa, S. and Soga, N. (1995) Anomalous temperature
- 422 dependence of the sound velocities of SiO₂-TiO₂ glasses, *Journal of Materials Science*
- 423 *Letters, 14,* 697-699.
- 424 Huang, L. and Kieffer, J. (2004) Amorphous-amorphous transitions in silica glass. I.
- 425 Reversible transitions and thermomechanical anomalies, *Physical Review B*, 69,
- 426 224203.
- 427 Hushur, A., Manghnani, M.H., Williams, Q. and Dingwell, D.B. (2013) A high-
- 428 temperature Brillouin scattering study on four compositions of haplogranitic glasses
- 429 and melts: High-frequency elastic behavior through the glass transition, *American*
- 430 *Mineralogist, 98,* 367-375.

- 431 Karasinski, P., Tyszkiewicz, C., Maciaga, A., Kityk, I.V., and Gondek, E. (2015) Two-
- 432 component waveguide SiO₂:TiO₂ films fabricated by sol-gel technology for
- 433 optoelectronic applications, *Journal of Materials Science, 26,* 2733-2736.
- Liang, Y. Miranda, C.R. and Scandolo, S. (2007) Mechanical strength and
- 435 coordination defects in compressed silica glass: Molecular dynamics simulations,
- 436 *Physical Review B, 75,* 024205.
- 437 Liu, Q. and Lange, R.A. (2001) The partial molar volume and thermal expansivity of
- 438 TiO₂ in alkali silicate melts: Systematic variation with Ti coordination, *Geochimica et*
- 439 *Cosmochimica Acta, 65, 2379-2392.*
- Liu, Q., Lange, R.A., and Ai, Y. (2007) Acoustic velocity measurements on Na₂O-TiO₂-
- 441 SiO₂ liquids: Evidence for a highly compressible TiO₂ component related to five-
- 442 coordinated Ti, *Geochimica et Cosmochimica Acta*, *71*, 4314-4326.
- Liu, J. and Lin, J.-F. (2014) Abnormal acoustic wave velocities in basaltic and (Fe-Al)-
- 444 bearing silicate glasses at high pressure, Geophysical Research Letters, 41, 8832-
- 445 8839.
- 446 Manghnani, M.H. (1972) Pressure and temperature dependence of the elastic
- 447 moduli of Na₂O-TiO₂-SiO₂ glasses, *Journal of the American Ceramic Society*, 55, 360-
- 448 365.
- 449 Manghnani, M.H., Sato, H. and Rai, C.S. (1986) Ultrasonic velocity and attenuation
- 450 measurements on basalt melts to 1500°C: Role of composition and structure in the
- 451 viscoelastic properties, *Journal of Geophysical Research*, *91*, 9333-9342.

- 452 Miller, G.H., Stolper, E.M., and Ahrens, T.J. (1991) The equation of state of molten
- 453 komatiite: 1. Shock wave compression to 36 GPa, Journal of Geophysical Research, 96,
- 454 11831-11848.
- 455 Murakami, M., and Bass, J.D. (2010) Spectroscopic evidence for ultrahigh-pressure
- 456 polymorphism in SiO₂ glass, *Physical Review Letters*, *104*, 025504.
- 457 Murakami, M., and Bass, J.D. (2011) Evidence of denser MgSiO₃ glass above 133 GPa
- 458 and implications for remnants of ultradense melt from a deep magma ocean,
- 459 *Proceedings of the National Academy of Sciences, 108,* 17286-17289.
- 460 Ponader, C.W., Boek, H., Dickinson, J.E., Jr. (1996) X-ray absorption study of the
- 461 coordination of titanium in sodium-titanium-silicate glasses, Journal of Non-
- 462 *Crystalline Solids, 201,* 81-94.
- 463 Reynard, B., and Webb, S. (1998) High-temperature Raman spectroscopy of
- 464 Na₂TiSi₂O₇ glass and melt: Coordination of Ti⁴⁺ and nature of the configurational
- 465 changes in the liquid, *European Journal of Mineralogy*, *10*, 49-58.
- 466 Rigden, S.M., Ahrens, T.J. and Stolper, E.M. (1989) High-pressure equation of state of
- 467 molten anorthite and diopside, *Journal of Geophysical Research*, *94*, 9508-9522.
- 468 Rivers, M.L., and Carmichael, I.S.E. (1987) Ultrasonic studies of silicate melts, *Journal*
- 469 *of Geophysical Research, 92,* 9247-9270.
- 470 Sanchez-Valle, C., and Bass, J.D. (2010) Elasticity and pressure-induced structural
- 471 changes in vitreous MgSiO₃-enstatite to lower mantle pressures. *Earth and Planetary*
- 472 Science Letters, 391, 288-295.
- 473 Sanloup, C., et al. (2013) Structural change in molten basalt at deep mantle
- 474 conditions, *Nature, 503*, 104-107.

- 475 Scannell, G., Koike, A., and Huang, L. (2016) Structure and thermo-mechanical
- 476 response of TiO₂-SiO₂ glasses to temperature, *Journal of Non-Crystalline Solids*, 447,
- 477 238-247.
- 478 Schultz, P.C. (1976) Binary titania-silica glasses containing 10 to 20 wt% TiO₂,
- 479 Journal of the American Ceramic Society, 59, 214-219.
- 480 Schultz, P. and Smyth, G.T. (1972) Ultra-low expansion glasses and their structure in
- 481 the SiO₂-TiO₂ system, in *Amorphous Materials*, edited by R.W. Douglas and B. Ellis,
- 482 Wiley-Interscience, New York, 453-461.
- 483 Secco, R.A., Manghnani, M.H., and Liu, T.-C. (1991) Velocities and compressibililities
- 484 of komatiitic melts, *Geophysical Research Letters*, *18*, 1397-1400.
- Shim, S.-H., and Catalli, K. (2009) Compositional dependence of structural transition
- 486 pressures in amorphous phases with mantle-related compositions, *Earth and*
- 487 *Planetary Science Letters, 283,* 174-180.
- 488 Spera, F.J., Ghiorso, M.S., and D. Nevins (2011) Structure, thermodynamic and
- 489 transport properties of liquid MgSiO₃: Comparison of molecular models and
- 490 laboratory results, *Geochimica et Cosmochimica Acta, 75,* 1272-1296.
- 491 Stixrude, L., and Karki, B. (2005) Structure and freezing of MgSiO₃ liquid in Earth's
- 492 lower mantle, *Science*, *310*, 297-299.
- 493 Tamura, T., Tanaka, S., and Kohyama, M. (2012) Full PAW calculations of
- 494 XANES/ELNES spectra of Ti-bearing oxide crystals and TiO-SiO glasses: Relation
- between pre-edge peaks and Ti coordination, *Physical Review B*, *85*, 205210

- 496 Thomas, C., Liu, Q., Agee, C.B., Asimow, P.D., and Lange, R.A. (2012) Multi-technique
- 497 equation of state for Fe₂SiO₄ melt and the density of Fe-bearing silicate melts form 0
- 498 to 161 GPa, *Journal of Geophysical Research*, *117*, B10206.
- 499 Vacher, R., Pelous, J., Plicque F., and Zermbowitch, A. (1981) Ultrasonic and Brillouin
- 500 scattering study of the elastic properties of vitreous silica between 10 and 300 K.
- 501 Journal of Non-Crystalline Solids, 45, 397-410.
- 502 Waff, H. (1975) Pressure-induced coordination changes in magmatic liquids,
- 503 *Gephysics Research Letters, 2,* 193-196.
- 504 Williams, Q. and R. Jeanloz (1988) Spectroscopic evidence for pressure-induced
- 505 coordination changes in silicate glasses and melts, *Science, 239,* 902-905.
- 506 Xue, X., Stebbins, J.F., Kanzaki, M., McMillan, P.F., and Poe, B. (1991) Pressure-
- 507 induced silicon coordination and tetrahedral structural changes in alkali oxide-silica
- 508 melts up to 12 GPa: NMR, Raman, and infrared spectroscopy, American Mineralogist,
- 509 *76,* 8-26.
- 510 Yarger, J.L., et al. (1995) Al coordination changes in high-pressure aluminosilicate
- 511 liquids, *Science*, *270*, 1964-1967.
- 512 Zha, C-S., Hemley, R.J., Mao, H.-K., Duffy, T.S. and Meade, C. (1994) Acoustic velocities
- and refractive index of SiO₂ glass to 57.5 GPa by Brillouin scattering, *Physical Review*
- 514 *B, 50,* 13105-13112.
- 515

516 **Figure Captions.**

- 517 Figure 1. Representative data on compressional (P) and shear (S) wave velocities for
- 518 two compositions of glass under pressure. The lines without symbols are results for

- 519 $a \sim 7.5 \text{ wt\% TiO}_2$ glass reported by Andreatch and McSkimin (1976). Typical errors 520 on velocities are 0.1%, or substantially smaller than the symbols.
- 521

522	Figure 2. Variations in bulk and shear moduli with composition at 300 K. The
523	horizontal bar denotes the compositional range in which predominantly 5-fold Ti-
524	substitution has been proposed to take place (e.g., Henderson et al., 2002); greater
525	Ti-contents are dominated by 4-fold coordination. Open symbols show Brillouin
526	results on glasses formed by flame hydrolysis from Scannell et al. (2016); their sol-
527	gel glasses lie at 1.1-2.4 GPa lower moduli than the corresponding flame hydrolysis
528	glasses for all overlapping compositions.
529	
530	Figure 3. Dependence of the pressure derivatives of the bulk and shear moduli on
531	titania composition. Two possible fits to the dK/dP data are shown: the smooth
532	curve (red) is a simple quadratic fit that might reflect a gradual coordination shift,
533	while the latter (black) reflects possible non-linear behavior in the compositional
534	range in which Ti shifts coordination from 5-fold to 4-fold within these glasses. The
535	data do not discriminate between these fits.
536	
537	Figure 4. Representative velocity measurements at high temperatures; the onset of
538	the high frequency glass transition causes the notable decline in velocities in excess

- 539 of 800°C for the 4.6% TiO₂ composition, and a combination of the glass transition
- and possible unmixing of the glass (e.g., Gonzalez-Oliver et al., 1982) impact the 9.4
- 541 wt% sample at the highest temperature conditions.

543	Figure 5. Bulk moduli of SiO ₂ -TiO ₂ glasses at high temperatures; the onset of the
544	high frequency glass transition causes the notable decline in modulus in excess of
545	800°C for the 4.6% TiO_2 composition, and crystallization of TiO_2 from the 9.4 wt%
546	sample causes the increase in modulus for this composition. The shaded lines (red
547	online) show the bulk moduli trends from the Brillouin spectroscopy study of
548	Scannell et al. (2016) for their glasses with 7.05 wt% (upper) and 10.7 wt% (lower)
549	TiO ₂ contents.
550	
551	Figure 6. Estimated change in thermal expansion with pressure as a function of
552	titania content, as derived from the bulk modulus and its temperature dependence.
553	The correction term from isentropic to isothermal bulk modulus is negligibly small
554	in these low thermal expansion glasses (Schultz and Smyth, 1970), and hence is
555	ignored.

Tables.

	Compo	osition	ρ	Vp	Vs	К	μ
Glass	in v	vt %	g/cm ³	km/sec	km/sec	GPa	GP
Number	SiO ₂	TiO ₂		(±0.006)	(±0.004)	(±0.09)	(±0.0
7940A							
(fused silica)	100	0	2.2007	5.947	3.769	36.16	31.2
T4A	98.7	1.3	2.2005	5.911	3.746	35.71	30.8
T1A	97.2	2.8	2.2001	5.872	3.717	35.32	30.4
T5A	95.4	4.6	2.1995	5.833	3.692	34.87	29.9
T6A	94.0	6.0	2.1992	5.803	3.672	34.53	29.6
T2A	92.7	7.3	2.1986	5.758	3.635	34.15	29.(
ULE 7971A	92.5	7.5	2.1993	5.783	3.653	34.42	29.3
T3A	90.6	9.4	2.1985	5.719	3.607	33.77	28.6

Table 1. Chemical composition and elastic parameters of SiO₂-TiO₂ glasses at ambient pressure and temperature.

Table 2.	Pressure and temperature derivatives of the elastic parameters of
	SiO ₂ -TiO ₂ glasses at ambient conditions.

	dK/dP	dµ/dP	dK/dT	dµ/dT
Glass			GPa/deg	GPa/deg
Number				
7940A				
(silica)	-5.37	-3.53	.0124	.0051
T4A	-5.68	-3.56	.0121	.0052
T1A	-5.42	-3.56	.0121	.0050
T5A	-5.97	-3.55	.0119	.0050
T6A	-5.85	-3.54	.0119	.0048
T2A	-5.96	-3.60	.0120	.0048
ULE 7971A	-5.88	-3.60	.0119	.0047
T3A	-5.77	-3.59	.0117	.0047

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

583 584 Figure 1.

DOI: https://doi.org/10.2138/am-2019-6729 38 SiO₂-TiO₂ Glasses **Bulk Modulus** 36 Elastic Moduli (GPa) 5-fold TiO₂ 34 Range Bulk Modulus (This Study) Scannell et al. (2016) 32 Shear Modulus (This Study) Scannell et al. (2016) \wedge 30 Shear Modulus 28 8 2 10 12 O 4 6 TiO_2 wt%

586 Figure 2.

587

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6729

590

591 Figure 3.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6729

595

596 Figure 5.

599 Figure 6.