Mineral compositions and thermobarometry of basalts and boninites recovered during IODP Expedition 352 to the Bonin forearc

SCOTT A. WHATTAM¹*, JOHN W. SHERVAIS², MARK K. REAGAN³, DANIEL A. COULTHAND JR.⁴, JULIAN A. PEARCE⁵, PETER JONES⁶, JIEUN SEO⁷, KEITH PUTIRKA⁸, TIMOTHY CHAPMAN⁹,¹⁰, DANIEL HEATON¹¹, HONGYAN LI¹², WENDY R. NELSON¹³, KENJI SHIMIZU¹⁴ AND ROBERT J. STERN¹⁵

¹Department of Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
²Department of Geology, Utah State University, Logan, UT 84322-4505, USA
³Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA
⁴Volcanic Risk Solutions, Massey University, Palmerston North 4414, New Zealand
⁵School of Earth, Ocean and Planetary Sciences, Cardiff University, Cardiff CF10 3YE, UK
⁶Department of Earth Sciences, Carleton University, Ottawa, ON, K1S 5B6, Canada
⁷Department of Earth and Environmental sciences, Korea University, Seoul 02841, South Korea
⁸Department of Earth and Environmental Sciences, California State University, Fresno, CA 93740, USA
⁹School of Geosciences, University of Sydney, NSW 2006, Australia
¹⁰Earth Science, School of Environmental and Rural Science, University of New England, NSW 2351, Australia
¹¹College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvalis, OR 97331-5503, USA
¹²State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
¹³Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252, USA
¹⁴Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Monbe-otsu 200, Nankoku, Kochi, 783-8502, Japan
¹⁵Geosciences Department, University of Texas at Dallas, Richardson, TX 75083-0688, USA

Words: 7330 excluding abstract

* Corresponding author. Tel.: 966 55 646 6238
E-mail address: sawhatta@gmail.com
ABSTRACT

Central aims of IODP Expedition 352 were to delineate and characterize the magmatic stratigraphy in the Bonin forearc in order to define key magmatic processes associated with subduction initiation and their potential links to ophiolites. Expedition 352 penetrated 1.2 km of magmatic basement at four sites and recovered three principal lithologies: tholeiitic forearc basalt (FAB), high-Mg andesite and boninite, with subordinate andesite. Boninites are subdivided into basaltic, low-Si and high-Si varieties. The purpose of this study is to determine conditions of crystal growth and differentiation for Expedition 352 lavas and compare and contrast these conditions with those recorded in lavas from mid-ocean ridges, forearcs and ophiolites. Results show that Cr# (cationic Cr/Cr+Al) vs. TiO$_2$ relations in spinel and clinopyroxene demonstrate a trend of source depletion with time for the Expedition 352 forearc basalt to boninite sequence that is similar to sequences in the Oman and other suprasubduction zone ophiolites. Clinopyroxene thermobarometry results indicate that FAB crystallized at temperatures (1142-1190°C) within the range of MORB (1133-1240°C). When taking into consideration liquid lines of descent of boninite, orthopyroxene barometry and olivine thermometry of Expedition 352 boninites demonstrate that they crystallized at temperatures marginally lower than those of FAB, between ~1119°C and ~1202°C and at relatively lower pressure (~0.2-0.4 kbar vs. 0.5-4.6 kbar for FAB). Elevated temperatures of boninite orthopyroxene (~1214°C for low-Si boninite and 1231-1264°C for high-Si boninite) may suggest latent heat produced by the rapid crystallization of orthopyroxene. The lower pressure of crystallization of the boninite may be explained by their lower density and hence higher ascent rate, and shorter distance of travel from place of magma formation to site of crystallization,
which allowed the more buoyant and faster ascending boninites to rise to shallower levels before crystallizing, thus preserving their high temperatures.

**Keywords:** International Ocean Discovery Program (IODP), JOIDES Resolution, Expedition 352, Izu-Bonin-Mariana Fore Arc, forearc basalt, boninite, ophiolite, Sites U1439, U1440, U1441, U1442

**INTRODUCTION**

A strong genetic link between ophiolites and intra-oceanic arc systems has been recognized for some time (Miyashiro 1973; Alabaster et al. 1982), and a more specific linkage with subduction initiation has been made more recently (Stern and Bloomer 1992; Shervais 2001; Pearce and Robinson 2010; Whattam and Stern 2011; Stern et al. 2012; Moghadam et al. 2014).

Nonetheless, controversy as to whether ophiolites mostly form in magmatic arcs or at mid-ocean ridges has persisted because, from a chemical and structural point of view, some ophiolites have chemical compositions like those of mid-ocean ridge basalt (MORB) while many others have chemical compositions like those of arcs. Part of this confusion lies in the fact that many ophiolites contain both a MORB-like unit and a volcanic arc-like unit, which suggests formation of each suite in two distinct tectonic environments. The early identification of the MORB-like component led to the interpretation that ophiolites are obducted remnants of normal oceanic lithosphere, like those produced today at the Mid-Atlantic Ridge or East Pacific Rise (e.g., Coleman, 1981; Moores 1982), but further study has consistently identified an arc-like chemical signature in most ophiolites (see Metcalf and Shervais 2008 for a review of the ‘ophiolite conundrum’). The recognition of MORB- and arc-like magmas has led to the interpretation that ophiolites represent fragments of oceanic lithosphere generated in supra-subduction zone settings (Miyashiro, 1973; Pearce et al. 1984; Pearce 2003; Saccani and Photiades 2004; Dilek and Shallo...
2007; Dilek et al. 2008; Moghadam and Stern 2014) with many studies suggesting formation within back arc basins (e.g., Evans et al., 1991; Monnier et al. 1995; Thompson et al. 1997; Cluzel et al. 2001; Saccani et al. 2008), to reconcile the chemical bimodality. Models entailing formation above a reconfigured subduction zone subsequent to a major tectonic reorganization and establishment of a new subduction zone within the original mid-ocean ridge or back arc were also advanced (see review of Whattam 2009).

A key breakthrough in reconciling these perspectives was the discovery that the most abundant lavas cropping out on the Mariana (Reagan et al. 2010, 2013), Izu (DeBari et al., 1999), and Bonin (Ishizuka et al. 2011) forearc trench slopes were MORB-like tholeiites termed ‘forearc basalts’ (or ‘FAB’; Reagan et al., 2010). These FAB are older than boninites exposed upslope in the forearc (cf. Ishizuka et al., 2006, 2011; Reagan et al., 2019), suggesting that seafloor spreading occurred immediately after subduction initiation to generate FAB and that boninites were generated later after fluids from the subducting slab became involved in magma genesis (Reagan et al., 2017). In an effort to extend these insights from marine geology on land, the subduction initiation rule of Whattam and Stern (2011) hypothesizes that all magmatic components (i.e., MORB, arc basalt, and boninite) of most well-preserved ophiolites form in similar proto-forearc settings and follow a predictable chemotemporal progression as a new subduction zone forms. This model is consistent with the hypothesis that seafloor spreading in a proto-forearc environment accompanies subduction initiation (Shervais, 2001; Stern et al., 2012).

The motivating force behind IODP Expedition 352, which drilled into the outer Bonin forearc was to test the aforementioned models. Here, we analyze the compositions of minerals from Expedition 352 lavas to determine the conditions of crystal growth and differentiation. We then compare and contrast the mineral compositions and thermobarometry with those of MORB
and ophiolites, specifically testing the hypothesis that ophiolites are more closely linked to subduction initiation rather than to regular ocean basin sea-floor spreading.

GEOLÓGIC AND TECTONIC BACKGROUND

The IBM intra-oceanic arc stretches 2,800 km from the Izu peninsula, Japan to seamounts west of Guam, USA (Figure 1). The IBM represents one of the most intensely studied intra-oceanic arcs on Earth, as numerous drilling expeditions, including IODP Expedition 352, manned submersible dives, and dredging cruises on and along the forearc have targeted this archtypical geologic setting (e.g. Bloomer and Hawkins, 1983; Ishizuka et al. 2006, 2011; Reagan et al. 2010, 2013, 2015, 2017). Some suggest that the IBM subduction zone began due to hemispheric-scale foundering of old, dense lithosphere comprising the western segment of the Pacific Plate and its ultimate subduction to the west beneath the Philippine Sea Plate (Stern and Bloomer, 1992; Bloomer et al. 1995; Stern et al. 2012). Leng and Gurnis (2015) however, propose an alternative model entailing the combination of thermal and compositional density contrasts between the overriding relic arc and adjacent old Pacific oceanic plate, the conditions of which promoted spontaneous subduction initiation (see also Stern and Bloomer, 1992; Niu et al. 2002). A third model postulates that subduction was nucleated above the Manus plume (0°N/150°E) near the Pacific-East Asian Sea plate boundary circa in the middle Eocene (Macpherson and Hall, 2001; Wu et al., 2016). Large-scale formation of seafloor crust in the IBM forearc after subduction initiation began between 52.5 and 51.9 Ma (Ishizuka et al. 2011; Reagan et al. 2013; Reagan et al., 2019). The Philippine Sea plate subsequently migrated northward and was accompanied by post-40 Ma maximum 80° clockwise rotation. The
predominantly submarine convergent plate boundary is thus the result of ~52 My of subduction of the Pacific Plate beneath the eastern margin of the Philippine Sea Plate.

The sequence of initial magmatic products preserved in the IBM forearc is “ophiolite-like” and is similar everywhere the forearc has been sampled (Bloomer and Hawkins 1983; Stern and Bloomer 1992; DeBari et al., 1999; Reagan et al. 2010, 2013, 2017; Ishizuka et al. 2011). This commonality implies that a short (<1 Ma), but intense episode of asthenospheric upwelling, magmatism, and seafloor spreading to generate FAB-related crust occurred immediately after subduction initiation (Reagan et al., 2019). This zone of upwelling, melting and magmatism occurred over tens to hundreds of kilometers across the entire arc (Arculus et al., 2015; Hickey-Vargas et al., 2018; Yogodzinski et al., 2018). Boninite volcanism followed closely after FAB, beginning at c. 51.3 Ma and lasting through to c. 46 Ma (Ishizuka et al. 2006, 2011; Reagan et al., 2019).

The presence of boninites is in itself an important tectonic indicator. Numerous petrological, geochemical, and experimental studies (e.g. Crawford 1989; Umino and Kushiro 1989; van der Laan et al. 1989; Pearce et al. 1992; Taylor et al. 1994; Kushiro 1972, 1974; Green 1973, 1976; Mitchell and Grove, 2015) have suggested that boninite magmas are generated via high degrees of partial melting (of the order of >20%) of refractory mantle fluxed with slab-derived fluids or melts in subduction environments with modest temperatures (~1130-1275°C) and low pressure (0.3-1.7 kbar; see reviews by Kushiro, 2007; Pearce and Reagan, 2019).

Subsequent to boninite production in the IBM forearc, igneous activity retreated westward towards where the magmatic arc is today. This later activity was characterized by the production of normal arc tholeiitic and calc-alkaline magmas beginning at c. 45 Ma, thereby
marking the establishment of a mature and stable magmatic arc system (Ishizuka et al. 2006; 2011; Reagan et al., 2008).

STUDY AREA

IODP Expedition 352 drilled the northern IBM forearc to the immediate northeast of the Bonin Islands between 142°30′E and 143°00′E and 28°24′N and 28°27′N (Reagan et al. 2015) (Figure 1b). Four drill sites were cored: U1440 and U1441 are closest to the trench and U1439 and U1442 are upslope and to the west (Figure 1c). Sites U1440 and U1441 recovered FAB and related hypabyssal rocks (dolerite dikes, Reagan et al., 2017; Shervais et al., 2019), whereas boninite series and high-Mg andesite lavas were recovered from Sites U1439 and U1442. A total of 1.22 km of magmatic basement was cored.

Expedition 352 results suggest FAB erupted shortly after subduction initiation and were generated by seafloor spreading, as evidenced by the widespread presence of mafic dikes, with little to no subduction input and compositions similar to those of the most depleted MORB (Reagan et al., 2017; Shervais, et al., 2019). Subsequent to extraction of FAB, continued melting of a more depleted mantle caused by fluxing of subduction components is inferred to result in the generation of the boninites. This succession is analogous to that recorded by many ophiolites, thus providing a direct link between subduction initiation, forearc spreading and ophiolite genesis (Stern and Bloomer, 10092; Shervais, 2001; Reagan et al., 2010; Whattam and Stern, 2011; Stern et al., 2012; Reagan et al., 2017)
METHODS

Electron probe micro analyzer

Approximately 70 samples of tholeiitic FAB, high-Mg andesite, boninite, and subordinate andesite were chosen for electron probe micro-analyzer (EPMA) analysis. Quantitative analyses were made on an automated 4 spectrometer Cameca Camebax MBX electron probe housed in the Department of Earth Sciences, Carleton University (Ottawa, Canada) by the wavelength dispersive X-ray analysis method (WDX). Operating conditions involved a 20 kv accelerating potential and a beam current of 20 nA. Beam sensitive minerals such as feldspar, were analyzed using a rastered electron beam of ~ 8 x 8 microns in size and a focused beam size of 1 micron was used for microlites of clinopyroxene and feldspar. Alkali elements such as Na and K were analyzed first. Peak counting times were c. 15–20 seconds unless X-ray counts exceeded 40,000. Background positions were chosen carefully to avoid interferences from adjacent peaks and measurements were made at 50% of the peak counting time. Raw X-ray data were converted to elemental weight % by the Cameca PAP matrix correction program. A suite of well characterized natural and synthetic minerals and compounds were used as primary and secondary calibration standards. Kakanui kaersutite K1 and USNM Kakanui hornblende and USNM chromium augite (Reay et al, 1989; Jarosewich et al, 1980) were analyzed as internal standards to monitor data quality. Analyses are accurate to 1–2 % for major elements (>10 wt %) and 3–10 % relative for minor elements (0.5–10%) As the detection limit is approached (<0.1 wt %), relative errors approach 100 %. Throughout the text, we refer to informal thin section numbers of our probed samples. Supplementary Table S1 provides corresponding formal IODP sample numbers.
Olivine crystals, Cr-spinel inclusions, and Cr-spinel phenocrysts were analyzed for major
elements using a JEOL JXA-8230 Superprobe at the University of Iowa. For olivine, the beam
conditions were set to 20 keV and 200 nA. Each spot was analyzed for 10.5 minutes with a dwell
times of 40 seconds for major elements, 90 seconds for most minor elements, and 360 seconds
for Al. In order to check for instrumental drift as well as ensure data quality, we analyzed San
Carlos Olivine grains intermittently during the analysis. Cr-spinel was measured with the beam
set to 20 keV and 20 nA and 1.5-minute count time. The Cr-spinel standard NMNH 117075 was
analyzed during the analysis as a drift monitor and for data quality assurance.

Thermobarometry and Mineral-melt equilibria

The Fe/Mg partition coefficient between olivine and basaltic liquid

$\left[ \frac{(Fe/Mg)_{ol}}{(Fe/Mg)_{melt}} \right]$ is well constrained experimentally as 0.30±0.03 (Roeder and Emslie

1970) being constant for a wide range of conditions, except for pressures higher than 10 kbar

(Ulmer, 1989) or for Fe-rich olivine (Fo<25) (Toplis and Carroll 1995). The Fe/Mg partition
coefficient between orthopyroxene and basaltic liquid is also well established at 0.29±0.06 (see
Putrika 2008). The Fe/Mg partition coefficient between clinopyroxene and basaltic liquid is less
well constrained than for olivine-liquid, principally because of the presence of abundant ferric
iron in clinopyroxene. Although a slight compositional effect may exist (Hoover and Irvine
1977), $\left( \frac{(Fe/Mg)^{cpx}}{(Fe/Mg)^{melt}} \right) = 0.27±0.03$ is consistent with experimental results (Putirka,

2008), and 0.27 is adopted here.

Estimates of temperatures and pressure of FAB crystallization are based on compositions
of clinopyroxene phenocrysts and microlites using the methods, models and equations of Putirka
et al. (1996, 2003) and Putirka (2008). Specifically, we use equations P1 and T1 of Putirka et al.
(1996); the model of Putirka et al. (2003); and equations 30 (temperature), 33 (pressure) and 34 (temperature) of Putirka et al. (2006). Conditions of boninite crystallization are based on orthopyroxene and olivine phenocryst compositions. Pressure estimates from orthopyroxene are calculated from equations 29a, 29b and 29c of Putirka (2008) and temperatures are calculated from Beattie (1993) and equations 28 and 28b of Putirka (2008). Olivine temperature estimates are calculated using Beattie (1993) and equations 13-15 of Putirka (2008).

In order to compare the composition of clinopyroxene phenocrysts and microlites from Expedition 352 FAB with those from typical MORB, we collated clinopyroxene and complementary whole rock compositions from the Petrological Database (PetDB, http://www.earthchem.org/petdb). Details of sample selection, collation, and manipulation of PetDB MORB whole-rock and clinopyroxene samples are provided in the supplementary material. Pressure and temperature estimates of clinopyroxene from the PetDB MORB database (n = 75 samples shown to exhibit clinopyroxene-melt equilibrium) are calculated using the thermometer of Putirka (2008, Eqn. 33) and the barometer of Neave and Putirka (2017).

It is important to establish whether Expedition 352 FAB clinopyroxene phenocrysts and microlites and boninite orthopyroxene and olivine phenocrysts were in equilibrium with the host magma when they crystallized. If mineral-melt equilibria can be established, specific mineral-melt (whole-rock composition) pairs can then be used to constrain the pressure and temperature of crystallization. The demonstration of disequilibrium between specific mineral-melt pairs also yields information, such as the presence of xenocrysts and/or crystal cumulates.

To assess mineral-melt Fe-Mg exchange for clinopyroxene, orthopyroxene and olivine for our new mineral compositions, we use whole-rock compositions from Reagan et al. (2015). Whole rock Mg# (i.e., Mg\(^{2+}/(Mg^{2+}+Fe^{2+})\)) for the FAB is calculated assuming Fe\(^{3+}/Fe^{T} = 0.17\)
(whereby \( \text{FeT} = \text{Fe}^{2+} + \text{Fe}^{3+} \)), a value that approximates crystallization at the FMQ (fayalite-
magnetite-quartz) oxygen buffer. For the boninites, high-Mg andesites and lone anomalous
andesite TS 93 (formal IODP number 352-U1439C-8R-2-W 105/107-TSB-TS_93), whole rock
\( \text{Mg#} \) is calculated assuming \( \frac{\text{Fe}^{3+}}{\text{FeT}} = 0.22 \) which corresponds to \( f_{\text{O}_2} \) of about +1 to 1.5 log units above FMQ (see Brounce et al., 2015).

Sample compositions and classification

We first establish lithology on the basis of whole-rock chemistry using a subset of
Expedition 352 whole-rock analyses (Reagan et al. 2015) for which we have corresponding thin
sections. The whole-rock analyses are used to classify magma types and calculations of the
mineral-melt equilibria. Shipboard analyses were carried out using ICP-AES methods provided
in Reagan et al. (2015). The effect of seawater alteration on whole rock compositions is typically
limited to the addition of K and in some cases Ca and Na to the whole-rock (Shervais et al.,
2019), which has minimal effect on the thermobarometry calculations.

On the basis of whole-rock geochemistry, Expedition 352 lavas are divided into basalt-
andesite-dacite-rhyolite and boninite series lavas on the basis of \( \text{SiO}_2 \) vs. \( \text{MgO} \) and \( \text{MgO} \) vs.
\( \text{TiO}_2 \) (Figures 2a, b). Boninites are further divided into basaltic boninite, low-Si boninite, and
high-Si boninite on this plot based on approximate liquid lines of descent for primitive boninite
with varying \( \text{SiO}_2 \) concentrations (Pearce and Reagan, 2019). Highly differentiated boninite plots
as high-Mg andesite (Figure 2). The lavas from sites U1440 and U1441 all plot as basalts within
the basalt-andesite-dacite-rhyolite field, whereas lavas from sites U1439 and U1442 plot as
various types of boninite and high-Mg andesite.
Sample 352-U1439C-8R-2-W 105/107-TSB-TS_93 from boninite Site U1439, which is referred to as a high-Mg andesite below, is anomalous in that it plots within the basalt-andesite-dacite-rhyolite field series on the SiO$_2$ vs MgO plot, but has low TiO$_2$ concentrations, which are more akin to those of high-Mg andesite.

**RESULTS**

**Petrography**

The mineralogy and modal proportions of FAB, high-Mg andesite, and boninite are summarized in Table 1 and their principal petrographic characteristics are presented in Table 2. Representative thin section photographs are provided in Figure 3.

The FAB are generally aphyric with quench plagioclase, augite, and magnetite. Rare plagioclase and augite phenocrysts are present in some samples, the latter of which are almost always unzoned. Boninites are generally porphyritic. Low-Si boninites typically have phenocrysts of olivine, Cr-spinel, and clinopyroxene, sometimes with orthopyroxene. Groundmass often has quench clinopyroxene and plagioclase crystals. The high-Si boninites typically contain orthopyroxene ± olivine with Cr-spinel with quench orthopyroxene and clinopyroxene. Olivine crystals typically are subhedral to anhedral, whereas pyroxenes, plagioclase, and Cr-spinel are typically euhedral. In most boninites, olivine, clinopyroxene and orthopyroxene phenocrysts are strongly zoned. The high-Mg andesites typically have augite ± orthopyroxene ± plagioclase and rare olivine phenocrysts with quench clinopyroxene and plagioclase in the matrix. Detailed petrographic descriptions are provided in the supplementary material$^1$.

**Mineral compositions**
The compositional data of all minerals are provided in the Supplementary Document (Supplementary Tables S2-S7).

**Olivine.** EPMA analyses of olivine in the boninite are provided in Supplementary Table S4. Olivine phenocrysts are highly magnesian ranging from Fo$_{88}$ to Fo$_{92}$ in the low-Si boninite and from Fo$_{87}$ to Fo$_{93}$ in the high-Si boninite. Apart from one rim of olivine in a low-Si boninite which has 0.15 wt.% NiO, the remaining olivine NiO contents are high (0.22-0.43 wt.%), approaching those of mantle olivine (cf. Sato, 1977; Takahashi et al., 1987). CaO concentrations are low (0.13 to 0.20 wt%) and similar to those of olivine from water-rich subduction-related basalts (Gavrilenko et al., 2016).

**Clinopyroxene.** 118 analyses were acquired on clinopyroxene spanning all lithologies from all holes. Clinopyroxene analyses are provided in Supplementary Table S2 and Figure 4a summarizes their compositional variation. All clinopyroxene in FAB, andesite, and high-Mg andesite are augite, with FAB clinopyroxene extending to more Fe-rich compositions (Wo$_{25}$En$_{44}$Fs$_{31}$ to Wo$_{42}$En$_{41}$Fs$_{18}$) compared with those from high-Mg andesite (Wo$_{34}$En$_{51}$Fs$_{15}$ to Wo$_{42}$En$_{46}$Fs$_{12}$). Clinopyroxene from low-Si boninite vary primarily in terms of Mg and Ca, ranging from Wo$_{16}$En$_{71}$Fs$_{13}$ to Wo$_{43}$En$_{47}$Fs$_{10}$. Clinopyroxene from high-Si boninite are also augite (Wo$_{27}$En$_{56}$Fs$_{17}$ to Wo$_{48}$En$_{30}$Fs$_{22}$).

Clinopyroxene Al$_2$O$_3$ concentrations range from 2.10-7.68 wt.%, 0.99-11.89 wt.% and 1.58-4.62 wt.% in the low-Si boninite, high-Si boninite and high-Mg andesite respectively.

Cr$_2$O$_3$ in the same order, ranges from 0.02-0.78 wt.%, 0.01-0.38 wt.% and 0.01-0.56 wt%. FAB clinopyroxene have Al$_2$O$_3$ and Cr$_2$O$_3$ which range from 1.39-7.69 wt.% and 0-0.75 wt.%, respectively. In general, TiO$_2$ contents of the Ca-rich pyroxene are variable and Na$_2$O contents are generally low (typically <0.25 wt.%).
Mg#, Na2O, TiO2 and Cr2O3 contents of clinopyroxene show little systematic variation in FAB with depth (Figure 5). In general, no appreciable differences exist between the composition of clinopyroxene cores and rims at similar core depths for the FAB, although Na2O concentrations are somewhat higher in microlites relative to phenocrysts at similar depths in Core U1440B. Similarly, compositions of clinopyroxenes in boninite and high-Mg andesite show little variation with depth. Exceptions include general increases in Mg# and decreases in Na2O content with depth for both boninite sites.

**Low-Ca pyroxene.** Analyses of low-Ca pyroxene are provided in Supplementary Table S3. Low-Ca pyroxenes are found in the low-Si boninite, high-Si boninite, and high-Mg andesite but not in FAB (Figure 4a). Low-Ca pyroxene in the low-Si boninite range from Wo1En89Fs10 to Wo9En78Fs13 and in the high-Si boninite, they range from Wo1En71Fs10 to Wo5En89Fs27. Orthopyroxene in the high-Mg andesite have a restricted range from Wo3En83Fs14 to Wo5En77Fs17. All low-Ca pyroxene are Mg-rich with X_{Mg} (100En/(En+Fs)) typically >85 (the mean X_{Mg} of all low-Si boninite and high-Si boninite low-Ca pyroxene is 86), although some high-Si boninite low-Ca pyroxene have X_{Mg} <80. X_{Mg} of low-Si boninite, high-Si boninite and high-Mg andesite low-Ca pyroxene range from 83-90, 72-90 and 82-86, respectively. rims are richer in more iron-rich than their cores, with X_{Mg} typically 1-2 lower than the cores. Orthopyroxene in the low-Si boninite, high-Si boninite and high-Mg andesite have low Al2O3 (0.72-1.45, 0.26-1.61 and 0.92-1.90 wt.%, respectively) and TiO2 (typically ≤0.06%) (Table A3). Cr2O3 contents range from 0.07-0.70 wt.% in the low-Si boninite, 0.05-0.90 wt.% in the high-Si boninite, and 0.22-0.46 wt.% in the high-Mg andesite.

**Spinel.** EPMA analyses of Cr-spinel are provided in Supplementary Table S5. Cr-spinel occurs in both the low-Si boninite and high-Si boninite as reddish-brown, euhedral to subhedral
crystals usually as inclusions in olivine but are also present in the groundmass. Cr-spinel in both the low-Si boninite and high-Si boninite have high \( \text{Cr}_2\text{O}_3 \) (52.8-62.8 wt.% and 55.8-62.9 wt.%, respectively), which fall within the range of olivine-hosted spinel of Chichijima boninite (49-63 wt.% \( \text{Cr}_2\text{O}_3 \), Dobson et al., 2006). \( \text{Cr}\# = 100*\text{Cr}/(\text{Cr+Al}) \) are also high, ranging from 74-88 in low-Si boninite Cr-spinel and from 79-86 in high-Si boninite Cr-spinel (Table A5). In general, the very high \( \text{Cr}\# \) of Cr-spinel reflect high Cr contents of host melts and low activities of Al. Mg\# of the Cr-spinel in the low-Si boninite and high-Si boninite range from 54-65 and 50-62, respectively. Spinel \( \text{Fe}^{3+}/\text{Fe}^{2+} \) ranges from 0.22-0.42 in the low-Si boninite and from 0.15-0.34 in the high-Si boninite. \( \text{Fe}^{3+} \) is derived by stoichiometry using the methods of Droop (1987).

Magnetite is the only Fe-Ti oxide present and occurs only in the FAB. A single magnetite grain was analyzed and has \( \text{MgO} \) of 0.69 wt.%, \( \text{MnO} \) of 0.37 wt.% and \( \text{Al}_2\text{O}_3 \) of 2.75 wt.%, and \( \text{TiO}_2 \) of 17.11 wt.%. (Supplementary Table S5).

**Feldspar.** Plagioclase is ubiquitous in FAB, the anomalous andesite 352-U1439C-8R-2-W 105/107-TSB-TS_93 and the high-Mg andesite but relatively rare in the low-Si boninite and absent from all but the most differentiated high-Si boninite. A total of 78 spot analyses were obtained on plagioclase from the FAB; 16 spot analyses were obtained on plagioclase of the anomalous andesite, high-Mg andesite and low-Si boninite. The compositional range of plagioclase from the FAB nearly encompasses the compositions of plagioclase from all other magma types, but extends to higher An content (FAB plagioclase cores record An_{51-91} with a mean of An_{68}) (Figure 4b, Supplementary Table S6). For comparison, the range and mean of An from plagioclase of the andesite, high-Mg andesite and low-Si boninite are An_{49-62} (An_{56}), An_{66-76} (An_{73}) and An_{62-76} (An_{71}), respectively. Plagioclase cores were analyzed in FAB, the
anomalous andesite, high-Mg andesite, and low-Si boninite; plagioclase rims were analyzed in
the FAB only. In the FAB, plagioclase cores are normally zoned.

In the high-Mg andesite, plagioclase K<sub>2</sub>O and FeO range from 0.03-0.04 wt.% and 0.75-
0.98 wt.%, respectively, whereas in plagioclase from the low-Si boninite, K<sub>2</sub>O and FeO range
from 0.07-0.13 wt.% and 0.87-1.04 wt.%. FeO also ranges to much higher contents in the FAB
(0.35-2.38 wt.%) but FeO contents in the andesite plagioclase (0.75-0.80 wt.%) are lower than all
other magma types.

**Conditions of Crystallization**

Mineral composition data were filtered such that only those with totals between 98.5-101
wt.% oxides and with cations within 1% of 4 cations per 6 O (i.e. +/- 0.04) formula unit are used
in all pyroxenes used in thermobarometry calculations and related plots. Pressure and
temperature estimates are shown for those clinopyroxene phenocrysts and microlites, and
orthopyroxene and olivine phenocrysts that pass the test of mineral-liquid equilibrium (Rhodes
diagrams regions between dashed lines in Figure 6). Table 3 and Figure 7 provides a synopsis of
the pressure and temperature estimates obtained for all magma types using clinopyroxene and
orthopyroxene thermobarometry and olivine thermometry. Whole-rock compositions are used as
the input for the liquid in the thermobarometry calculations. Supplementary Tables S7 and S8
provide results of pressure-temperature estimates on the basis of clinopyroxene thermobarometry
and orthopyroxene thermobarometry, respectively; Supplementary Table S9 provides
temperature estimates on the basis of olivine thermometry. Supplementary Tables S7-9 provide
an explanation of the calculation of the means and ranges cited in Table 3. Uncertainties in
pressure and temperature estimates for all thermometers and barometers employed are ±1 kbar and ±30°C, respectively.

**Olivine-liquid thermometry.** Most boninites from Expedition 352 have Mg#s of 80 to 83, which are too high to be in equilibrium with analyzed olivine crystals or for magmas in equilibrium with even highly-depleted, Fo$_{92}$-bearing mantle (assuming Kd$_{\text{Mg/Fe}}$ between olivine and melt = 0.3 and melt Fe$^{3+}$/FeT = 0.22) (Figure 6c, Supplementary Table S9). To adjust our boninite whole rock compositions towards equilibrium, as much as 22 % accumulated olivine was subtracted from both low-Si and high-Si boninites. These adjusted whole rock compositions have Mg#s in the range of 0.71-0.78, which are in keeping for magmas produced from depleted mantle (e.g., Roeder and Emslie, 1970). Using these adjusted melt compositions and the olivine-liquid thermometry equation recommended for use when magmas are hydrous (equation 22; Putirka, 2008), and assuming 2 wt% H$_2$O in the melt which are average values measured in boninite pillow rind glasses from Chichijima (Dobson O’Neil, 1987), the low- and high-Si boninites yield similar ranges of calculated temperatures (1,119-1,202) °C.

A geohygrometer based on the distribution coefficient of CaO between magmas and olivine (D$_{\text{CaO}}^{\text{O/L}}$), and that is accurate to approximately 1.5 wt% was recently developed by Gavrilenko et al (2016). The calculated water concentrations for Expedition 352 boninites using this geohygrometer are 2–4 wt% (Figure 10). Using this range of water concentrations in equation 22 from Putirka (2008), results in little change to the calculated olivine-liquid temperatures (i.e. using 4 wt% water results in calculated temperatures of 1,120 – 1,200°C).
**Clinopyroxene-liquid thermobarometry.** Whole-rock Mg# vs. clinopyroxene Mg# relations are shown in Figure 6a for FAB, the andesite, high-Mg andesite and boninites. Eleven analyses of clinopyroxene from the FAB but none from the andesite and basaltic boninite plot within the equilibrium field (Figure 6a); a large number of clinopyroxene from the FAB, high-Mg andesite and boninite plot below the equilibrium field suggesting that they crystallized from differentiated interstitial magma.

The calculated temperatures of clinopyroxene phenocrysts and microlites from the FAB (when $K_{D(Fe-Mg)}^{\text{cpx-liq}} = 0.27 \pm 0.3$) are narrow, yielding a mean temperature of $1163 \pm 14^\circC$ in the range of $1142–1190^\circC$ ($n = 13$), although the estimated pressure range is relatively large (0.5–4.6 kbars) (Table 3, Supplementary Table S7). Phenocryst cores and rims and microlites show similar pressure and temperature estimates in accord with Scruggs and Putirka (2018). As a test of equilibrium, we use Putirka (1999) to predict the clinopyroxene end-member components Di+Hd (DiHd), En+Fs (EnFs), CaTs and Jd, using the liquid composition and estimated temperature and pressure as input. These predicted components represent the clinopyroxene composition that should precipitate if the liquid used as the input is saturated with clinopyroxene at the given temperature and pressure conditions. The components should also sum to one. If the sum is greater than one, then the system is oversaturated in clinopyroxene, and for a system where the sum is less than one, the liquid is undersaturated. These predicted components are also compared to the observed components for a given clinopyroxene as calculated by Putirka (1999, 2008). If the components match within model error, then the pressure–temperature–composition conditions are allowably within an equilibrium state and the pressure–temperature estimates are assumed to be valid. These clinopyroxene also pass additional tests of equilibrium if the...
predicted and measured end-member components (DiHd, EnFs and CaTs) match to within 2-σ uncertainties (Supplementary Figure S1a).

We also calculated crystallization temperatures of clinopyroxene in equilibrium with MORB (Figure 8) for comparison with FAB crystallization temperatures. The mean and range of PetDB MORB ($n = 75$) temperatures are $1182 \pm 15 \, ^\circ\text{C}$ and $1133-1240\, ^\circ\text{C}$ (Table 3, Supplementary Table S10). The mean MORB temperature is close to that obtained on clinopyroxene from Expedition 352 FAB ($1163 \pm 14\, ^\circ\text{C}$) (Figure 9a). Pressure estimates obtained from clinopyroxene in the Expedition 352 FAB (mean and range of $2.4 \pm 0.4$ kbar and $0.5-4.6$ kbar) are also similar to those calculated for the PetDB MORB dataset (mean and range of $1.4 \pm 0.2$ kbar, $-1.8-8.3$ kbar, Figure 9b, Table 3, Supplementary Table S10). Nonetheless, crystallization temperatures of FAB relative to MORB at a given pressure are demonstrably lower (Figure 9b). In contrast, melting temperatures and pressures are higher than MORB (Shervais et al., 2019). A plot of observed versus predicted clinopyroxene components of the 75 PetDB MORB samples demonstrates that the data are as robust (Supplementary Figure S1b) as that of our clinopyroxene data from the Expedition 352 FAB (Supplementary Figure S1a).

**Orthopyroxene-liquid thermobarometry.** Whole rock Mg# vs. orthopyroxene Mg# relations are shown in Figure 6b for the high-Mg andesite, low-Si boninite and high-Si boninite. Several orthopyroxenes from the high-Mg andesite, low- Si boninite and high-Si boninite fall within the orthopyroxene-basaltic melt equilibrium field.

Calculated orthopyroxene-melt equilibrium pressures and temperatures for Expedition 352 high-Mg andesite, low-Si boninite and high-Si boninite (FAB have no orthopyroxene) are given in Table 3. Mean pressure and temperature estimates for the single high-Mg andesite
provide 0.2 ± 0.05 kbar and 1193 ± 26°C (Table 3), respectively. P-T conditions determined for
the low-Si and high-Si boninites based on orthopyroxene thermobarometry are 0.3 ± 0.1 kbar
(mean) and 1214 ± 13°C (mean) and 0.2-0.4 kbar (mean of 0.3 ± 0.1 kbar) and 1235-1264°C
(mean of 1249 ± 13°C), respectively (Table 3, Supplemental Table S8). The temperatures
calculated for orthopyroxene are higher than those calculated for olivine from the low-Si
boninite and high-Si boninite, which agree with each other within the uncertainties of the
calculations (see Table 3). As orthopyroxene normally follows olivine in the boninite liquid lines
of descent (Pearce and Reagan, 2019), the higher calculated orthopyroxene temperatures are
surprising. Possible reasons for the higher boninite orthopyroxene crystallization temperatures
are discussed in the Discussion (P-T evolution of FAB and boninite).

**Inferences from spinel compositions.** Plots of TiO$_2$ vs. Cr# (cationic Cr/Cr+Al) and
TiO$_2$ vs. Al$_2$O$_3$ of olivine-hosted chromite of the low-Si boninite and high-Si boninite,
demonstrate their very low, arc-like TiO$_2$ and Al$_2$O$_3$ and high Cr# relative to MORB spinel
(Figures 11a, b). A plot of Cr# vs. Mg# in chromite demonstrates a compositional overlap of
low-Si boninite and high-Si boninite chromite with Izu-Bonin (Leg 125; van der Laan et al. 1992)
and Chichi-jima (Umino, 1986; Yajima and Fujimaki 2001) boninite spinel, and a close
similarity between Expedition 352 boninite spinel and boninite spinel from the Semail ophiolite
(Figure 11c) (Ishikawa et al. 2002).

A plot of Cr# vs. TiO$_2$ wt.% for chromite with vectors showing melt-rock reactions
between refractory mantle compositions and melts generated by partial melting of these sources
(Pearce et al., 2000) is shown in Figure 12. MORB composition melts have relatively high Al/Cr
ratios and high TiO$_2$, whereas boninite-related melts are more refractory, with low Cr/Al ratios
and lower TiO$_2$. This plot demonstrates that chromite of the Expedition 352 low-Si and high-Si
boninites overlap with the field of chromite in other IBM boninites (see Pearce et al., 2000 for references) in Cr# vs. TiO$_2$ wt.% space. The Expedition 352 spinel also plot at the end of the melt-mantle interaction trends that characterize the drilled harzburgites from Conical seamount in the IBM forearc. Thus, the compositions of Expedition 352 chromite support the genetic link between boninites and depleted mantle lithosphere in the forearc (Parkinson et al., 1998).

Dare et al. (2009) used spinel compositions to calculate $f$O$_2$ using the method of Balhaus et al. (1991), and demonstrated that chromite from MORB, island arc basalts and subduction initiation boninites can be discriminated on plots of $\Delta$log$_{FMQ}$ vs. Cr#. Compared to MORB spinel, island arc spinel were shown to have higher $f$O$_2$ and similar-to-higher Cr#, reflecting the fact that fluid-rich oceanic subduction environments typically lead to more oxidizing conditions and higher degrees of melting than ocean ridges. Boninites were shown to have higher Cr# than both MORB and island arc basalts, and oxygen fugacities that span MORB and arc values reflecting prior mantle depletion and variable $f$O$_2$ in subduction components.

Our oxygen fugacity data reported in Supplementary Table S11 are plotted in Figure 13 together with the fields from Dare et al. (2009). Although the errors are high for calculated $f$O$_2$ (Fe$_{3+}$/ΣFe values were not quantified using Mössbauer spectrometry), the Expedition 352 boninites plot in the center of the boninite field with no overlap into other fields. Specifically, boninites exhibit $\Delta$log$_{FMQ}$ of 0.1-1.1 with no significant differences between low and high-Si varieties. Despite their lower precision, these $f$O$_2$ values are mostly within the range of c. 0.3-1.5 obtained from Fe$_{3+}$/Fe$_{2+}^+$ measurements on glasses from FAB and (younger) boninites from the IBM system (Brounce et al., 2015). The high Cr# and moderately high calculated $f$O$_2$ values
for chromite from Expedition 352 boninites are similar to those of ophiolitic boninites (e.g. Dare et al., 2009).

**DISCUSSION**

**P–T Evolution of FAB and boninite**

A plot of Mg# of FAB and MORB clinopyroxene vs. temperature estimates (Figure 9) shows that FAB clinopyroxene crystallize at 1142-1190°C within the range of MORB (1133-1240°C), but at slightly higher pressure (~0.2-0.5 kbar) than MORB (Figure 9b), which is at the edge of model uncertainty.

The olivine-liquid data in Figure 7 demonstrate that the crystallization temperatures for relatively primitive boninites (1,119 – 1,202°C, with means and standard deviations of 1172 ±23°C and 1152±24°C for the low-Si boninites and high-Si boninites respectively) overlap with clinopyroxene crystallization temperatures for somewhat more differentiated FAB (1142-1190 °C with a mean of 1163±14°C; (Table 3). Clinopyroxene in FAB, however, record higher pressures (0.5-4.6 kbar with a mean of 2.4±0.4 kbar) than for orthopyroxene crystallization in the boninites (0.2-0.4 kbar with a mean of 0.3±0.1 kbar) (Table 3). These calculations infer that FAB crystallization began at marginally higher temperatures and occurred over a broader range of pressures compared with boninites, which is consistent with higher P-T conditions calculated for FAB generation compared with boninite (Shervais et al., 2019; Lee et al., 2009).

We estimate density of the FAB and boninite in order to assess relative rates of magma ascension to better understand why the FAB and boninite exhibit different crystallization pressures (lower for the latter with slightly lesser temperatures). We estimate density for the cases of dry and hydrous compositions (FAB with 0.3 wt.% dissolved H₂O and boninite with 3
wt.% dissolved H$_2$O) using the models of Lange and Carmichael (1990) and Ochs and Lange (1999), respectively, which make use of the major oxide composition of a liquid. Boninites have significantly higher concentrations of MgO (9.00-16.34 wt. %) compared with FAB (5.40-8.35 wt. %), causing the boninites to be less dense (calculated dry and wet densities of 2.65-2.69 g/cm$^3$ and 2.46-2.50 g/cm$^3$ for the low-Si boninites and 2.59-2.68 g/cm$^3$ and 2.41-2.49 g/cm$^3$ for the high-Si boninites) compared with FAB (dry density of 2.70-2.77 g/cm$^3$ and wet density of 2.68-2.74 g/cm$^3$) (Table 4). On the basis of differences in pressure and hence depth of formation of FAB magma at ~14-16 kbar or 47-53 km (Shervais et al., 2019) and pressure and depth of crystallization of the FAB (0.5-4.6 kbar or 2-15 km), the FAB magma travelled about 30-50 km before crystallizing clinopyroxene. In contrast, taking into consideration the pressure and depth of boninite magma formation (assuming 3 wt. % water) at 4-12 kbar or 13-40 km (Shervais et al., in preparation) and the pressure and depth of boninite crystallization at 0.2-0.4 kbar or 0.7-1.3 km, the boninite magma travelled between about the same distance before crystallizing orthopyroxene. The presence of water lessens the density of silicate melts due to it low molecular weight (Lange, 1994) and under similar magma network conditions (e.g., melt conduit/pipe diameter or dike width, and wall rock density), less dense melts will ascend faster than denser ones (e.g., Tanaka et al., 2014). The lesser density of the boninite relative to the FAB is consistent with the former being more buoyant. In addition to a significantly shorter travel time from place of magma generation to site of crystallization, the lower density allowed the boninite to rise faster and to shallower levels and erupt more rapidly, thus preserving the temperatures of their near-primary magmas (Table 3). It should be noted, however, that most Exp. 352 boninites analyzed here erupted with accumulated crystals adding to boninite density and making it less eruptible. However, olivine and pyroxenes tend to be approximately 20%
more dense than their basalt parent, so if a rock contains 10-20% olivine phenocrysts, the fractional increase in density is only 0.02-0.04, which would not significantly affect density and hence ascent and eruptibility, particularly as the boninite magmas were volatile saturated and with bubbles relative to the FAB magma. Significant density differences between the FAB and boninite thus suggests that the latter rose faster from their source than FAB thus preserving relatively high crystallization temperatures.

The average mantle separation temperature for FAB (the last temperature of magma-mantle equilibration) is 1,380°C at 15 kbar (Shervais et al., 2019) and our calculated clinopyroxene temperatures are 1179°C at 4.6 kbar to 1142°C at 0.5 kbar (Supplementary Table S8). Thus, the cooling rate for the shallow part of the system (9.02°C/kbar or about 2.72°C/km) is about half that calculated for magma to get from its source at 15 kbar to 4 kbar (19.3°C/kbar or 5.9°C/km), which may be the result of latent heat release during crystallization at crustal pressures. Low-Si boninite, however, typically last equilibrated with mantle at 0.8 kbar and 1270°C with 3 wt.% water (Shervais et al., in preparation). Our olivine crystallization temperatures record fractionation starting at 1202°C (Supplementary Table S10) and our orthopyroxene barometry suggests fractionation at 0.3 kbar (Table 3). This yields a rapid cooling rate of greater than 100°C/kbar or >30°C/km, significantly higher than for FAB. However, the calculated orthopyroxene crystallization temperatures of 1214°C for the low-Si boninite and 1235-1264°C for the high-Si boninite (Table 3, Supplementary Table S8), suggest that crystallization histories for the boninites are complex.

The increase in crystallization temperature for boninite orthopyroxene relative to boninite olivine is surprising as the former follows the latter in the liquid line of descent for boninite (Pearce and Reagan, 2019) and so is expected to yield a lower crystallization temperature. The
significant temperature increase indicates a significant contribution of latent heat to the thermal budget which could be the result of for example, a heating event by hotter, more mafic magma just prior to eruption (e.g., Venezky and Rutherford, 1999; Devine et al., 2003). Alternatively, Blundy et al. (2006) argued that temperature increase in Mount St. Helen and Shiveluch (Kamchatka, Russia) andesitic magmas were caused instead by latent heat release of crystallization via magma decompression and degassing, which they contend is likely in any hydrous magma that decompresses at a rate that permits crystallization and heat retention. This may be the case in the Exp. 352 boninite (Fig. 15).

**Comparison of crystallization temperature and pressure with other IBM boninites**

Expedition 352 boninites record crystallization temperatures similar to those of other Izu-Bonin boninites. Expedition 352 low-Si and high-Si boninite olivine temperature estimates (means of 1172 ± 23°C and 1152 ± 24°C, respectively) and orthopyroxene temperature estimates (means of 1214 ± 9°C and 1249 ± 13°C, respectively) fall within the temperature range obtained via pyroxene thermometers on boninites (1080-1287°C, Dobson et al. 2006; Supplementary Table S12) from Chichijima (~160 km SSW of Expedition 352 Sites). The range of <1100-1260°C calculated via phase relations for Izu-Bonin forearc (Site 786, Ocean Drilling Program) boninites by van der Laan et al. (1992) also encompasses the range in temperatures estimated for Expedition 352 low-Si boninites on the basis of orthopyroxene thermometry, and high-Si boninites on the basis of orthopyroxene and olivine thermometry within the uncertainties (Table 3, Supplementary Table S12). Thus, temperatures largely overlap for all boninites from the Bonin Islands region.

**Comparisons of FAB to MORB and the Semail ophiolite**
Here, we compare our results for the IBM forearc lavas with MORB and ophiolites to test the hypothesis that the birthplace of ophiolites is a proto-arc/forearc environment formed during subduction initiation. Such data also illustrate changes in conditions of magma differentiation as the geodynamics of volcanism evolved after subduction initiation. First, we use discrimination diagrams for FAB (below) and then boninites (next section) to compare conditions of crystallization with lavas from known tectonic settings.

In the Oman ophiolite, initial MORB-like lavas (lower Geotimes Unit) were followed by the eruption of arc-like basalts (Lasail and Alley units; Alabaster et al., 1982). The time progression from less LILE-depleted and HFSE-enriched lavas to LILE-enriched and HFSE-depleted compositions defines the subduction initiation rule of Whattam and Stern (2011) and is characteristic of other ophiolites, e.g., Mirdita (Dilek et al., 2008) and Pindos (Saccani and Photiades, 2004) and the Central American forearc (Whattam et al., 2020). In Figure 16a we show that 93% of the clinopyroxene from Expedition 352 FAB plot to the right (high TiO$_2$ side) of a line of Cr$_2$O$_3 = (5.28 \times$ TiO$_2$) -2.62 drawn here to separate FAB from boninite (more depleted melt compositions lie left of the line). The Expedition 352 FAB clinopyroxene plot along with 97% of MORB ($n = 1198$) whereas 81% of the boninite clinopyroxenes plot to the left of this line. We take the decrease in Ti and increase of Cr concentrations in clinopyroxene from lower FAB to upper FAB and boninite to be a reflection of the concentrations of these elements in their associated melts, which suggests increasing depletion of the magma sources with time. All of the MORB-like Geotimes Unit basalts of Oman plot to the right of the line of Cr$_2$O$_3 = (5.28 \times$ TiO$_2$) -2.62 and the majority of the arc-like Alley Unit (79%) plot to the left of this line (Figure 16b) indicating a similar increased depletion with stratigraphic height. The plot does not effectively discriminate the arc-like Lasail Unit of Oman, however, as 79% of lavas of
this unit plot with the FAB and MORB and 65% of lavas of the arc-like cpx-phyric unit plots to
the left of the line with the Alley Unit lavas.

**IMPLICATIONS FOR OPHIOLITE AND FOREARC CRUST FORMATION**

Originally interpreted as ‘trapped’ West Philippine Basin back arc basin crust generated
prior to subduction inception (DeBari et al. 1999, see Figure 1 for location of their study), FAB
were instead interpreted by Reagan et al. (2010) as the first lavas formed after subduction
initiation as the result of decompression melting of the mantle during forearc spreading (Kodaira
et al., 2010). This model is similar to that first proposed by Stern and Bloomer (1992) and that
was later refined to include ophiolite petrogenesis by Shervais (2001), Whattam and Stern (2011)
and Stern et al. (2012).

On the basis of clinopyroxene thermobarometry and chemistry from this study, the FAB
exhibit mostly MORB-like tectonomagmatic affinities with crystallization pressures and
temperatures on the high-P, low-T side of the MORB array. These findings lend credence to the
idea of an origin for FAB by sea-floor spreading, albeit above a newly subducting slab (e.g.,
Reagan et al., 2010; Shervais et al., 2019), which may explain the steeper trajectory of cooling
for FAB relative to MORB.

We suggest that, in the case of the present study area, initial partial melting of previously
depleted mantle (Yogodzinski et al., 2018; Li et al., 2019) during seafloor spreading at source
depths lower than those of MORB (46-53 km vs. ~60-80 km), and at higher temperatures
(Shervais et al., 2019) produced FAB (Fig. 17). The unusually high temperatures of melting to
generate FAB might have originated in the Manus Plume, which has been interpreted to have
surfaced in the Bonin island region about the time of subduction initiation (Macpherson and Hall
Following extraction of the FAB, the highly depleted residual harzburgitic mantle remained in the mantle wedge and was fluxed by slab-derived fluids. Boninitic magmas were then generated at low pressure possibly via partial melting of diapirs of slab-metasomatized residual MORB mantle. A similar chemotemporal model has been proposed for the Oman ophiolite (Alabaster et al., 1982) and could be a model for many supra-subduction zone ophiolites as summarized by Whattam and Stern (2011).

The Expedition 352 FAB pre-date boninite formation by no more than 0.6 m.y. (Reagan et al., 2019), which is similar to the rapid time-frame of magma sequences in ophiolites (e.g. Rioux et al. 2012). Results of this study corroborate a similar chemo-temporal progression of the Izu-Bonin forearc with subduction initiation ophiolites. This in turn implies similar origins for the IBM forearc and “subduction-initiation rule” (Whattam and Stern, 2011) ophiolites. The chemo-temporal transition from FAB to boninite in lavas of both ophiolites and the Izu-Bonin forearc have been interpreted to reflect a dynamic, tectonic setting with rapidly changing conditions of magma genesis that accompany the deepening of the slab and evolution of slab-derived fluid pathways over the course of subduction initiation (Whattam and Stern, 2011; Stern et al., 2012). Such a progression is becoming increasingly apparent for ophiolites (e.g., Shervais, 2001; Pearce and Robinson 2010; Whattam and Stern 2011; Stern et al. 2012; Moghadam et al. 2014) and other intra-oceanic forearcs (e.g., Torro et al., 2017; Whattam et al., 2020) on a global scale.

**ACKNOWLEDGEMENTS**

This research used samples and data provided by the International Ocean Discovery Program (IODP). We thank the crew and scientific staff onboard Expedition 352, particularly Katarina Petronotis, for their excellent work. SAW acknowledges support from the Korea International Ocean Discovery Program (K-IODP) funded by the...
Ministry of Oceans and Fisheries, Korea. We also acknowledge support from NSF awards OCE-1558689 (JWS) and OCE-1558688 (MKR). JS acknowledges support by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A3B03931481). TC acknowledges the Australia-New Zealand IODP consortium (ANZIC), which enabled participation on Exp. 352 and post-expedition funding via the support of government agencies and universities together with the ARC LIEF scheme (LE140100047). HL acknowledges support from the National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-02). SAW thanks T. Ishikawa for sharing compositional data of Semail ophiolite boninite minerals. We thank numerous anonymous reviewers whose suggestions greatly improved the manuscript.

Figure Captions

Fig. 1 Study areas. (a) Geological setting of the Izu-Bonin Mariana arc system in the western Pacific. The circled numbers 1, 2, and 3 represent active spreading ridges, extinct spreading ridges and convergent margin or trenches (i.e., subduction zones), respectively; the boxes labelled ‘Dive area A’ and ‘Dive area B’ to the immediate east of the Izu-Bonin Arc and Guam represent the regions in which the dive sites of DeBari et al. (1999) and Reagan et al. (2010) respectively, were conducted as discussed in the text. (b) Location of Expedition 352 drill sites to the immediate NE of the Bonin Islands. Box above, magnification of Sites U1439, U1442, U1440 and U1441 (filled yellow circles) shown in main figure. The boxes labelled ‘Dive area C1, C2, and C3’ represent the dive sites of Ishizuka et al. (2011) as discussed in the text. (c) Two alternative interpretations of the stratigraphic section (not to scale) of the Bonin forearc drill site area. Interpretation I (top) entails FAB underlying boninite whereas the second one (bottom) entails FAB lying ‘trenchward’ and the boninite lying ‘arcward’. The bottom panel (second interpretation) is from Reagan et al. (2015).

Fig. 2 Whole rock classification of Expedition 352 lavas. (a) MgO vs. SiO2 of Expedition 352 magmas. The IUGS classification of boninites (grey shade) in (a) and (b) is from LeBas (2000).
The boundaries between basalt-andesite-dacite-rhyolite (BADR) series and boninite series is from Pearce and Robinson (2010) and the subdivision of boninites into basaltic boninites (BB), low-Si boninites (LSB) and high-Si boninites (HSB) is from Reagan et al. (2015). The formal IODP number for TS 93 is 352-U1439C-8R-2-W 105/107-TSB-TS_93.

Fig. 3 Photomicrographs of representative Expedition 352 lavas. a, b) FAB (TS 50), (c, d) anomalous andesite (TS 93), (e, f) high-Mg andesite (TS 208), (g, h) low-Si boninite (TS 111), and (i, j) high-Si boninite (TS 185) under (a, c, e, g, i) plane polarized light and (b, d, f, h, j) cross polarized light. Scale bar in the lower right of each image is 1000 µm (1 mm). Formal IODP numbers for TS 50, TS 93, TS 208, TS 111 and TS 185 are shown on the bottom left-hand side of the plane polarized images and all formal IODP numbers are provided in Supplementary Table 1.

Figure 4 Mineral classification of Expedition 352 lavas. (a) FAB, anomalous andesite (TS 93), high-Mg andesite and boninite clinopyroxene and orthopyroxene classification based on the En-Fo-Ws pyroxene quadrilateral (Morimoto, 1998). The large spread in compositions of clinopyroxene is related to quench effects on rims and small grains. The large and small symbols represent cores and rims, respectively. (c) FAB, andesite, high-Mg andesite and low-Si boninite plagioclase classification.

Fig. 5 Expedition 352 clinopyroxene composition vs. sub-seafloor depth. Forearc basalt, andesite, high magnesium andesite and boninite clinopyroxene Mg# (cationic Mg/Mg+Fe2+), Na2O, TiO2 and Cr2O3 vs. depth in meters below sea floor (mbsf). Note that in the Na2O vs. depth plot, five forearc basalt clinopyroxenes (154 m depth) plot off the right of the plot with depth.
anomalously high Na$_2$O ranging from 1.93-2.49 wt.% and that in the TiO$_2$ vs. depth plot, two
forearc basalt clinopyroxenes plot off the right of the plot with anomalously high TiO$_2$ of 1.22
and 1.89 wt.%.

Fig. 6 Mineral-melt Fe/Mg equilibrium diagrams for Expedition 352 lavas. (a) clinopyroxene, (b)
orthopyroxene and (c) olivine of FAB, andesite, high-Mg andesite and boninite varieties. In a-c,
the Mg# is calculated assuming Fe$^{3+}$/Fe$^{2+} = 0.17$ of FeT and the equilibrium fields are represented
by the gray shaded region (Rhodes diagram). In (a), the equilibrium field for Fe/Mg exchange
between clinopyroxene and basaltic melt is $0.23 \pm 0.05$, (Toplis and Carroll, 1995). In (b), the
equilibrium field for Fe/Mg exchange between orthopyroxene and basaltic melt is $0.29 \pm 0.06$
(Rhodes et al., 1979). In (c), the equilibrium field for Fe/Mg exchange between olivine and
basaltic melt is $0.30 \pm 0.03$ (Roeder and Emslie, 1970). The Mg# of the whole rocks was corrected
by olivine subtraction so that the samples lie along the equilibrium curve

Fig. 7 Pressure-temperature summary plot. Plot shows the mean estimated pressures and
temperatures calculated via clinopyroxene and orthopyroxene thermobarometry and olivine
thermometry. Uncertainties in the pressure and temperature estimates are ±1 kbar and ±30°C,
respectively. Abbreviation: tb (beside cpx and opx), thermobarometry.

Fig. 8 Mineral-melt Fe/Mg equilibrium diagram for PetDB MORB clinopyroxenes. The
equilibrium field for Fe/Mg exchange between clinopyroxene and basaltic melt is $0.27 \pm 0.03$,
(Toplis and Carroll, 1995) and is represented by region enclosed by dashed lines (Rhodes
diagram).
Fig. 9 Temperature vs. Mg # and pressure of Expedition 352 FAB clinopyroxene vs. MORB clinopyroxene. In (a) and (b) means only are plotted; standard deviations are provided in Table 3. In (b) the larger white circles enclosing a smaller purple and grey circle represent the mean temperature and pressure estimates of Expedition 352 FAB and MORB clinopyroxenes, respectively. Note also in (b) that one PetDB MORB sample (MELPROT-5-037-001) plots off the top of the figure with a P of 8.3 kbar and temperature of 1188°C. See Table 3 and supplementary material for details of calculation of FAB and MORB clinopyroxene temperature estimates.

Fig. 10 Geohygrometer based on the distribution coefficient of CaO between magmas and olivine ($D_{CaO}^{O/L}$) vs. MgO of Exp. 352 boninite which is accurate to approximately 1.5 wt% (Gavrilenko et al. 2016).

Fig. 11 Tectonomagmatic discrimination of Expedition 352 boninites on the basis of chromian spinel composition. (a) Chromian number (Cr#, cationic Cr/Cr+Al) vs. TiO$_2$ (Arai, 1992), (b) Al$_2$O$_3$ vs. TiO$_2$ (Kamenetsky et al., 2001) and (c) Mg vs. Cr# number of boninite spinel inclusions in olivine. Shown for comparison in (c) are the fields of boninite spinel compositions of (1) the Mariana forearc (Bloomer and Hawkins, 1987), (2) Chichijima (Umino, 1986; Yajima and Fujimaki, 2001), (3) of the Izu-Bonin forearc (Leg 125, van der Laan et al., 1992), (4) the Semail ophiolite (Ishikawa et al., 2002) and (5) the Troodos ophiolite (Cameron, 1985).
Fig. 12 Spinel Cr# vs. TiO$_2$ relations of Expedition 352 boninites. The plot (Pearce et al., 2000) demonstrates that Expedition 352 boninites overlap with the field of Cr-spinel in other IBM boninites (see Pearce et al., for references) and supports the model in which some boninite melts also refertilize the forearc mantle lithosphere upon ascent to the surface (Parkinson et al., 1998).

Fig. 13 Plot of $\Delta$log\,$f$O$_2$ FMQ (fayalite-magnetite-quartz) vs. spinel Cr# (Dare et al., 2009) of Expedition 352 boninites. $f$O$_2$ is calculated by the method of Balhaus et al. (1991). Supplementary Table S12 gives values and errors.

Fig. 14 Depth vs. density of FAB and boninite assuming 0.3 wt.% and 3 wt.% dissolved H$_2$O in the FAB and boninite magma, respectively. Error bars represent ± 1 standard deviation. In all cases, the uncertainty of the error is smaller than the symbol size. Densities were calculated from Ochs and Lange (1999).

Fig. 15 SEM-BSE images of resorbed olivine in Exp. 352 high-Si boninite. (a) Sample U1439A 21X-CC 22/25. Resorbed olivine (with chromite inclusions). This olivine has a very thin Fe-rich rim suggesting that olivine started to grow again from the melt about the time of cooling associated with eruption. This texture may be explained by olivine growth from primitive high-Si boninite, resorption by heating during rapid orthopyroxene growth, followed by saturation at the end during eruption as the system cooled (b) Sample 352-U1439C-5R-1-W 92/95-TSB-TS_88. Our interpretation is that olivine first grew from a melt that became more magnesian probably due to mixing with a more mafic magma. This was followed by resorption and orthopyroxene growth on the resorbed olivine. We interpret this olivine resorption to possibly be the result of
heating due to early orthopyroxene growth (note the composition of the orthopyroxene immediately surrounding the olivine which is the same as the outer zone (spot 6) of the nearby orthopyroxene to the left).

Fig. 16 Subdivision of Expedition 352 FAB and boninites vs. Semail ophiolite lavas on the basis of clinopyroxene Cr$_2$O$_3$ vs. TiO$_2$ relations. (a) Expedition 352 FAB and (b) Semail ophiolite lavas (Alabaster et al., 1982). The sub-vertical line is Cr$_2$O$_3$ = (5.28 x TiO$_2$)-2.62.

Fig. 17 Cartoon depicting the tectonomagmatic evolution (after Reagan et al., 2017) and formation and crystallization histories of the (a) FAB and (b) boninite. Formation pressure and temperature constraints for the FAB and boninite are from Shervais et al. (2019) and Shervais (personal communication), respectively. The boninite formation temperature is based on the boninite comprising 3 wt.% H2O. The white circles encompass the range of pressure conditions but because the range of pressure of crystallization of the boninite is small (0.2-0.4 kbar) its circle is enlarged x 5. TF and TC = formation temperature and crystallization temperature (ranges). DMM, depleted MORB mantle.

Table captions

Table 1 Modal estimates of phenocrysts and groundmass constituents of the FAB, lone andesite, high-Mg andesites and boninites.

Table 2 Synopsis of the petrographic features of the FAB, lone andesite, high-Mg andesites and boninites.
Table 3 Thermobarometry summary.

REFERENCES CITED


Hoover, J.D., Irvine, T.N. (1977) Liquidus relationships and Mg-Fe partitioning on part of the system MgSi_2O_4-Fe_2SiO_4-CaMgSi_2O_6-CaFeSi_3O_8-KaAlSi_3O_8-SiO_2. Carnegie Institute of Washington Yearbook, 77, 774-784.


Lange, R.L. and Carmichael, I.S.E. (1990). Thermodynamic properties of silicate liquids with emphasis on
density, thermal expansion and compressibility. In: Nicolls, J. and Russell, J.K. (Eds.), Modern methods
of igneous petrology. Mineralogical Society of America, Reviews in Mineralogy, 24, 25-64.

LeBas, M.J. (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology,
41(10), 1467-1470.


method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary
Science Letters, 59, 139-154.

Haraguchi, S., Takahata, N., Hrahara, Y., Miyazali, T. (2013) High-Mg adakite and low-Ca boninite from
a Bonin fore-arc seamount: Implications for the reaction between slab melts and depleted mantle. Journal
of Petrology, 54, 1149-1175.


Geochimica et Cosmochimica Acta, 74, 784-798.

on the partitioning of Ni between olivine and Site melt. Contributions to Mineralogy and Petrology,

Meschede, M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and


events in the eastern Philippine Sea. In: Hayes, D.E. (Ed.), The tectonic and geologic evolution of


http://dx.doi.org/10.1016/j.chemgeo.2007.01.014.


Geophysics, Geosystems 11, Q03X12, doi:10.1029/2009GC002871.


Whattam, S.A. Montes, C. and Stern, R.J. (2020) Early Central American forearc follows the subduction

arcs and subduction initiation, Contributions to Mineralogy and Petrology, 162, 1031-1045, doi:
10.1007/s00410-011-0638-z.

improved version of an empirical geothermometer, Contributions to Mineralogy and Petrology, 106, 431-
439.

Wood, D.A. (1980) The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to
establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,

Wu, J., Suppe, J., and Kanda, R. (2016) Philippine Sea and East Asian plate tectonics since 52 Ma constrained
by new subducted slab reconstruction methods. Journal of Geophysical Research, 121, 4670–4741,


Implications of Eocene-age Philippine Sea and forearc basalts for initiation and early history of the Izu-
https://doi.org/10.1016/j.gca.2018.02.047

modified by sediment-derived melt, Chemical Geology, 388, 98-111.
<table>
<thead>
<tr>
<th>Phase</th>
<th>FAB (n = 17)</th>
<th>TS 93 AND (n = 1)</th>
<th>HMA (n = 5)</th>
<th>BB (n = 8)</th>
<th>LSB (n = 14)</th>
<th>HSB (n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>6</td>
<td>8.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>4</td>
<td>0.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>1.2</td>
<td>0.3 -2.0</td>
<td>2.3</td>
<td>3</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>1.5</td>
<td>0.2 -5</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Magnetite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chromite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glass (original %)</td>
<td>5.6</td>
<td>0 - 82</td>
<td>*</td>
<td>40</td>
<td>22</td>
<td>46</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>15</td>
<td>0 - 48</td>
<td>54</td>
<td>42</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>Vesicles</td>
<td>1.6</td>
<td>0 - 15</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Groundmass

<table>
<thead>
<tr>
<th>Phase</th>
<th>Mean %</th>
<th>Range %</th>
<th>Mean %</th>
<th>Range %</th>
<th>Mean %</th>
<th>Range %</th>
<th>Mean %</th>
<th>Range %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthopyroxene</td>
<td>20</td>
<td>8.0 -35</td>
<td></td>
<td>15</td>
<td>8.0 - 25</td>
<td>22.5</td>
<td>10 - 35</td>
<td>20</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>38</td>
<td>10.0-53</td>
<td>37</td>
<td>38</td>
<td>25 -55</td>
<td>50</td>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>2</td>
<td>1.0 -3.0</td>
<td></td>
<td>1</td>
<td>0 -3</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Magnetite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0 - 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glass (original %)</td>
<td>5.6</td>
<td>0 - 82</td>
<td>*</td>
<td>40</td>
<td>30 -50</td>
<td>22</td>
<td>0 -100</td>
<td>46</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>15</td>
<td>0 - 48</td>
<td>54</td>
<td>42</td>
<td>19 -59</td>
<td>45</td>
<td>16 -79</td>
<td>32</td>
</tr>
<tr>
<td>Vesicles</td>
<td>1.6</td>
<td>0 - 15</td>
<td>3</td>
<td>7</td>
<td>0 -20</td>
<td>11</td>
<td>3 -20</td>
<td>11</td>
</tr>
</tbody>
</table>

Abbreviations: FAB, forearc basalt; AND, andesite; HMA, high-Mg-andesite; BB, basaltic boninite; LSB low-Si boninite; HSB high-Si boninite
Phenocrysts include microphenocrysts; chromite typically occurs as inclusions in olivine.
1Mesostasis here refers to microlites and cryptocrystalline quench phases. Includes devitrified glass.
* One HMA has 73% glass; all of the others have 0%. Note that TS 93 is an anomalous andesite (see text).

Whattam et al. 2020
Table 2 Summary of petrographic features of forearc basalts, boninites and high magnesium andesites

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Phenocrysts</th>
<th>Microlites</th>
<th>Groundmass</th>
<th>Alteration</th>
<th>Textural features</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAB</td>
<td>PL: 0.1-1.5 mm</td>
<td>PL</td>
<td>Altered (oxidized)</td>
<td>Oxidation of crypto-crystalline to unidentifiable secondary products; glass groundmass, veinlets</td>
<td>Predominantly equigranular, moderately devitrified of carbonates</td>
</tr>
<tr>
<td>CPX: 0.2-1.2 mm</td>
<td>CPX (rare)</td>
<td></td>
<td></td>
<td></td>
<td>Intergranular and intergranular; minor subophitic relations</td>
</tr>
<tr>
<td>TS 93 AND</td>
<td>PL: 0.4 mm</td>
<td>PL</td>
<td>Altered to zeolites in part, zeolites, chlorite</td>
<td>Intersertal groundmass</td>
<td>with augite phenocrysts</td>
</tr>
<tr>
<td>CPX: 0.6 mm</td>
<td>CPX</td>
<td></td>
<td>CPX altered to chloride in part.</td>
<td>Mesostasis completely altered to unidentified secondary products</td>
<td></td>
</tr>
<tr>
<td>HMA</td>
<td>PL: 0.3-0.4 mm</td>
<td>-</td>
<td>Equigranular plagioclase</td>
<td>Groundmass</td>
<td>Equigranular and intergranular, the latter</td>
</tr>
<tr>
<td>PX: &lt;0.5 mm</td>
<td></td>
<td></td>
<td>set in cryptocrystalline plagioclase laths and cryptocrystalline pyroxenes in the interstices of randomly oriented plagioclase laths</td>
<td>of which is defined by the occupation of materials ubiquitously altered/oxidized</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>OL: 0.4-7 mm</td>
<td>PL: 0.3</td>
<td>Glass or fine-grained mesostasis</td>
<td>Olivine phenocrysts</td>
<td>Phyric, hyalopilitic, OPX ML rimmed by CPX, vesicles rare</td>
</tr>
<tr>
<td>OPX: 0.8-5</td>
<td>OPX: 0.2</td>
<td>OPX altered to clay</td>
<td>Occasionally replaced</td>
<td>OL mantled by OPX, rare glomerocrysts</td>
<td></td>
</tr>
<tr>
<td>CPX: 0.2-5</td>
<td>CPX: 0.2</td>
<td>and carbonate. by clay, discrete zeolites</td>
<td>of OPX, rare oscillatory zonation of OPX, vesicles rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHR: 0.2-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSB</td>
<td>OL: 0.3-3.0 mm</td>
<td>OPX</td>
<td>Predominantly hyalopilitic</td>
<td>Minor carbonates</td>
<td>Phyric, hyalopilitic, OPX ML rimmed by CPX, vesicles rare</td>
</tr>
<tr>
<td>OPX: 0.2-0.8 mm</td>
<td>CPX</td>
<td>with clear fresh glass and zeolites</td>
<td>of OPX, rare oscillatory zonation of OPX, vesicles rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPX: 0.3-0.5 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHR: 0.2 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSB</td>
<td>OL: 0.1-1.6 mm</td>
<td>OPX</td>
<td>Predominantly hyalopilitic</td>
<td>Oxidation and</td>
<td>Phyric, OPX ML rimmed by CPX,</td>
</tr>
<tr>
<td>CPX: ≤0.2 mm</td>
<td></td>
<td></td>
<td>with clear fresh glass; palagonitization of</td>
<td>glomerocrysts of OPX common, vesicularity up to 15%, devitrification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>moderately altered</td>
<td>glass, veinlets of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>glass, carbonates and glass</td>
<td>spherules common</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: FAB, forearc basalt; AND, andesite; HMA, high-Mg andesite; BB, basaltic boninite; LSB low-Si boninite; HSB high-Si boninite

Note that TS 93 is an anomalous andesite (see text).

Whattam et al. 2020
Table 3 Thermobarometry summary

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Thermobarometer</th>
<th>n</th>
<th>P, µ (kbar)</th>
<th>P, range (kbar)</th>
<th>T, µ (°C)</th>
<th>T, range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAB</td>
<td>clinopyroxene</td>
<td>11</td>
<td>2.4 ± 0.4</td>
<td>0.5-4.6</td>
<td>1163 ± 14</td>
<td>1142-1190</td>
</tr>
<tr>
<td>HMA</td>
<td>orthopyroxene</td>
<td>1</td>
<td>0.2 ± 0.05</td>
<td>-</td>
<td>1193 ± 26</td>
<td>-</td>
</tr>
<tr>
<td>LSB</td>
<td>orthopyroxene</td>
<td>1</td>
<td>0.3 ± 0.1</td>
<td>-</td>
<td>1214 ± 9</td>
<td>-</td>
</tr>
<tr>
<td>HSB</td>
<td>orthopyroxene</td>
<td>6</td>
<td>0.3 ± 0.1</td>
<td>0.2-0.4</td>
<td>1249 ± 13</td>
<td>1235-1264</td>
</tr>
<tr>
<td>LSB</td>
<td>olivine</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>1172 ± 23</td>
<td>1119-1202</td>
</tr>
<tr>
<td>HSB</td>
<td>olivine</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>1152 ± 24</td>
<td>1125-1190</td>
</tr>
<tr>
<td>PetDB MORB</td>
<td>clinopyroxene</td>
<td>75</td>
<td>1.4 ± 0.2</td>
<td>-1.8-8.3</td>
<td>1182 ± 15</td>
<td>1133-1240</td>
</tr>
</tbody>
</table>

Refer to Supplementary Tables 10-12 for specific thermobarometers employed. Uncertainties associated with estimated P and T are ± 1 kbar and ± 30°C, respectively. Means are in bold and uncertainty assigned to the mean is the standard deviation.

Whattam et al. 2020
Figure 1 Whattam et al., 2018

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 2 Whattam et al. 2018
Figure 3 Whattam et al. 2018
Figure 4 Whattam et al. 2018
Figure 5 Whattam et al. 2018
Figure 6 Whattam et al. 2019

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 7 Whattam et al. 2019
Figure 8 Whattam et al. 2019
Figure 9 Whattam et al. 2019
Figure 10 Whattam et al. 2019
Figure 11 Whatam et al. 2019
Figure 12 Whattam et al. 2019
Figure 13 Whattam et al. 2019
Figure 14 Whattam et al. 2020
Figure 15 Whattam et al. 2020
Figure 16 Whattam et al. 2020
a Early subduction initiation: 52 Ma decompressional melting, early seafloor spreading, construction of FAB crust

Temperature:
- $T_r = 1142^\circ-1190^\circ\text{C}$
- $T_r = 1380^\circ-1480^\circ\text{C}$

b Continued subduction initiation: 51 Ma later seafloor spreading, construction of low-Si boninite crust

Temperature:
- $T_r = 1109^\circ-1202^\circ\text{C}$
- $T_r = 1220^\circ-1310^\circ\text{C}$

Temperature range:
- Increasingly depleted DMM

Cc Latest seafloor spreading: 50 Ma construction of arc comprised of high-Si boninite

Temperature:
- $T_r = 1125^\circ-1190^\circ\text{C}$
- $T_r = 1220^\circ-1310^\circ\text{C}$

Temperature range:
- Increasingly depleted DMM

Legend:
- Decompression melting column
- Asthenosphere flow
- Slab-derived fluids
- FAB crust
- Low-Si boninite crust
- High-Si-boninite arc crust

Figure 17 Whattam et al. 2020

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld