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Abstract 15 

Elastic geobarometry for host-inclusion systems can provide new constraints to assess the 16 
pressure and temperature conditions attained during metamorphism. Current experimental 17 
approaches and theory are developed only for crystals immersed in a hydrostatic stress field whereas 18 
inclusions experience deviatoric stress. We have developed a method to determine the strains in 19 
quartz inclusions from Raman spectroscopy using the concept of the phonon-mode Grüneisen tensor. 20 
We used ab initio Hartree-Fock/Density Functional Theory to calculate the wavenumbers of the 21 
Raman-active modes as a function of different strain conditions. Least-squares fits of the phonon-22 
wavenumber shifts against strains have been used to obtain the components of the mode Grüneisen 23 

tensor of quartz (𝛾1
𝑚 and 𝛾3

𝑚) that can be used to calculate the strains in inclusions directly from the24 

measured Raman shifts. The concept is demonstrated with the example of a natural quartz inclusion 25 
in eclogitic garnet from Mir kimberlite and has been validated against direct X-ray diffraction 26 
measurement of the strains in the same inclusion.  27 

28 
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Introduction 31 

Mineral inclusions entrapped in ultra-high-pressure metamorphic rocks can provide 32 

fundamental information about geological processes such as subduction and continental 33 

collision. When a host-inclusion pair is exhumed from depth to the Earth’s surface non-34 

lithostatic stresses are developed in the inclusion because of the contrast in their elastic 35 
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properties (Angel et al. 2015 and references therein). The inclusion is under compressive 36 

stress if it is more compressible than the host. If correctly interpreted, these stresses on the 37 

inclusion allow the stress conditions at entrapment to be estimated. However, the theory for 38 

elastic geobarometry for host-inclusion pairs is only developed for crystals immersed in a 39 

hydrostatic stress field. This is valid for an isotropic and spherical inclusion entrapped in an 40 

isotropic host as it is subject to isotropic strains imposed by the host and will therefore 41 

exhibit isotropic stresses; that means the inclusion will be under hydrostatic pressure. 42 

However, if inclusions of elastically anisotropic minerals such as quartz or coesite, are 43 

entrapped in a cubic host such as garnet the same isotropic strain imposed by the garnet will 44 

result in anisotropic (i.e. deviatoric) stresses in the inclusion (see Figure 1). Thus, the stress 45 

state of the inclusion will be different from the hydrostatic case, and it cannot be 46 

characterized by a single “pressure” value (Anzolini et al. 2018). Further, the shifts of 47 

Raman mode frequencies under deviatoric stress are unknown in general. The limited 48 

experimental evidence (e.g.Briggs & Ramdas 1977) is that the Raman modes change 49 

differently from those measured under hydrostatic pressure. Therefore, the key question 50 

remains that posed by Korsakov et al. (2010), can shifts of Raman modes measured in 51 

hydrostatic experiments be used to interpret the Raman shifts from an inclusion under non-52 

hydrostatic stress? And what errors does this introduce into estimates of inclusion stress and 53 

entrapment conditions? 54 

Since it is challenging to perform experiments under controlled deviatoric stress 55 

conditions, we have performed ab initio HF/DFT (Hartree-Fock/Density Functional Theory) 56 

calculations to determine how the Raman modes of quartz change under both hydrostatic 57 

pressure and deviatoric stress conditions. We show how the HF/DFT simulations can be 58 

used to determine the strains (and by inference the stresses) within a crystal inclusion via 59 

mode Grüneisen tensors and measurement of its Raman shifts.  60 
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61 

Grüneisen tensor and strains 62 

It is well known that when stresses are applied to a crystal, for example by changing 63 

the pressure, the phonon wavenumbers are shifted. This is most easily seen in the change in 64 

Raman peak positions measured under hydrostatic pressure. The shifts of certain modes of 65 

materials (e.g. the 464 cm-1 mode of quartz) have frequently been used as secondary pressure66 

standards. However, there is a common misconception that the observed wavenumber shifts 67 

of the Raman-active modes are directly related to the magnitude of the applied pressure or 68 

stress. If that were true, then Raman modes would not show a change in wavenumber when 69 

the temperature of a free crystal is changed at ambient pressure. Instead, Raman modes 70 

generally exhibit a decrease in wavenumber as temperature is increased. As Figure 2 shows, 71 

the shift of the 464 cm-1 mode of quartz with both pressure and temperature shows the same72 

dependence upon volume. These observations point to the correct interpretation that the shift 73 

 of the wavenumber of a vibrational mode is primarily due to the strains of the crystal74 

induced by the applied temperature or pressure. Thus, the Raman peak position of a crystal 75 

under a strain 𝜺 (i.e. the full strain tensor) is determined by the second-rank symmetric 76 

tensor: the mode Grüneisen tensor 𝜸𝒎  (Ziman 1960, Key 1967, Cantrell 1980) characteristic77 

of each phonon mode m, which can be written in Voigt (1910) notation as: 78 

−∆𝜔

𝜔
= 𝛾1

𝑚𝜀1 + 𝛾2
𝑚𝜀2 + 𝛾3

𝑚𝜀3 + 𝛾4
𝑚𝜀4 + 𝛾5

𝑚𝜀5 + 𝛾6
𝑚𝜀6

(
(1) 

This equation means that the changes in the Raman peak positions in general depend 79 

on all the components of the strain tensor (see supplementary material), not just on the 80 

relative change in the volume (i.e. 𝜀1  + 𝜀2+ 𝜀3). Because the mode Grüneisen tensor is a81 

symmetric second-rank property tensor, it is subject to the same symmetry constraints on its 82 

component values as other second-rank property tensors, such as the thermal expansion and 83 

compressibility tensors. For the trigonal symmetry of quartz 𝛾1
𝑚 = 𝛾2

𝑚 ≠ 𝛾3
𝑚 , and 𝛾4

𝑚 =84 
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𝛾5
𝑚 = 𝛾6

𝑚 = 0 . Garnet is almost elastically isotropic (Sinogeikin and Bass 2002) so the 85 

strain imposed by the garnet host does not break the symmetry of the quartz inclusion. 86 

Therefore, we are interested specifically in the cases when 𝜀1 = 𝜀2, for which the shift in the87 

phonon wavenumbers should be given by: 88 

−∆𝜔

𝜔
= 2𝛾1

𝑚𝜀1 + 𝛾3
𝑚𝜀3

(
(2) 

To determine the values of 𝛾1
𝑚  and 𝛾3

𝑚  independently of one another it is not89 

90 
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107 

sufficient to measure the Raman shifts under hydrostatic pressure, because only a single 

series of values of  𝜀1  and 𝜀3 are measured. We therefore use HF/DFT simulations to

calculate the Raman modes at different imposed strains on the crystal to determine its 

structure and properties at those strains. 

Raman shifts and strains from ab initio calculations 

Ab initio HF/DFT simulations have been performed by means of CRYSTAL 14 code 

(Dovesi et al. 2014) employing the hybrid Hamiltonian WC1LYP (Wu and Cohen 2006) 

which has been demonstrated to be particularly suitable for the accurate reproduction of the 

elastic and vibrational properties (Prencipe et al. 2014; Zicovich-Wilson et al. 2004). Further 

computational details are reported in the supplementary material (S1).  

We will only discuss in detail the Raman-active modes near 464 cm-1 (non-

degenerate A1 mode) and 696 cm-1 (doubly degenerate E mode) because they give peaks in 

the Raman spectra that are easily-resolved from the peaks of the host garnets. Note that all E 

modes in quartz are polar, and therefore have longitudinal optical (LO) and transverse 

optical (TO) components that generate two separate Raman peaks, whose intensity ratio 

varies depending on the scattering geometry. Because of the polarization mixing (Loudon 

1964), the wavenumber of the LO component depends on the angle between the triad axis of 

quartz and the phonon-propagation direction that in the case of backscattering geometry 108 
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coincides with the direction of the laser beam. For the E mode of interest in this study, the 109 

LO-TO splitting is rather small. At ambient conditions ETO = 696 cm-1, while the maximum110 

ELO ~ 697.5 cm-1 and it corresponds to the case when the c axis is perpendicular to the laser111 

beam. The two components are thus very close to each other and in specific experimental 112 

geometries may generate peaks of similar intensity. To avoid possible contribution from the 113 

LO component that may lead to a subtle artificial shift of the corresponding Raman peak 114 

towards higher wavenumbers, one should either rotate the sample about the direction of the 115 

laser beam to verify that the peak position does not change, or find the orientation at which 116 

the wavenumber of the Raman peak is lowest (which should be when the c axis is 117 

perpendicular to the polarization of the incident light).    118 

Figure 3a,b are contour maps that display the HF/DFT wavenumber shifts of the  A1 119 

mode near 464 cm-1 and ETO mode near 696 cm-1 as a function of the two independent120 

strain components. For small strains (close to the origin) the iso-shift lines are parallel to one 121 

another and equally spaced, confirming that the values of 𝛾1
𝑚  and 𝛾3

𝑚  are constants over122 

these strain ranges. The contour lines for the two modes have different slopes (e.g Figure 123 

3a,b,c) indicating that the values of their Grüneisen components are different. Further, Figure 124 

3a shows that the iso-shift lines are not parallel to isochors which are represented by lines of 125 

equal volume strain [𝜀𝑉= 2𝜀1+ 𝜀3]. If the wavenumber shifts are plotted against the stress126 

components and (Fig. 3d) then the iso-shift lines are not parallel to isobars (lines of 127 

constant pressure (2σ1+ σ3)/3= -P. Therefore, in general, Raman shifts do not measure either 128 

volume or pressures; for uniaxial crystals like quartz they indicate the principal normal strain 129 

components ε1 and ε3. The Grüneisen tensor components for all modes were then determined 130 

by fitting Eqn (2) by least-squares to the wavenumber shifts at different strain states 131 

simulated by HF/DFT calculations. For the 464 mode, the maximum misfit was 1.76 cm-1132 

(see supplementary material for residual plots and full details).133 
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HF/DFT calculations are performed under static stress at absolute-zero temperature. 134 

Inclusions are measured at room temperature. In order to use the mode Grüneisen tensors to 135 

determine strains in inclusions, one has to also demonstrate that their values are independent 136 

of P and T. This is equivalent to the solid behaving according to the quasi-harmonic 137 

approximation (QHA). We achieve this by calculating the strains of a free quartz crystal 138 

relative to room conditions from the known unit-cell parameter variation of quartz (Angel et 139 

al. 2017a) with P and T. We then compare the wavenumber shifts from room-condition 140 

values using the Grüneisen components (𝛾1
𝑚 and 𝛾3

𝑚) for the two modes at 464 cm-1 and 696 141 

cm-1 (i.e. 0.60 and 1.19; 0.50 and 0.36) determined by HF/DFT and equation 2 with 142 

experimental data. The line in Figure 2 shows that for the mode near 464 cm-1 the 143 

experimentally-measured wavenumber shifts under high pressure at room T and those up to 144 

~ 400°C at room P are reproduced by the Grüneisen components determined by HF/DFT. At 145 

higher temperatures the predicted shifts differ from the experimental data because of pre-146 

transition effects associated with the α-β quartz transition that cannot be accounted using 147 

QHA. Further, the fundamental soft mode near 206 cm-1, which is  heavily involved in the148 

temperature α- to β-quartz phase transition (Scott, 1968), clearly violates the QHA, and 149 

HF/DFT simulations cannot be used to determine the mode Grüneisen components. In order 150 

to use this band to determine strains in inclusions, the variation of its position with strain 151 

must be determined experimentally. 152 

153 

Validation from Raman scattering and X-ray diffraction 154 

To validate this approach, we performed micro-Raman spectroscopy and X-ray diffraction 155 

measurements on quartz inclusion in garnet from a diamond-grade eclogite xenolith (TM90-156 

1) from the Mir kimberlite pipe (Yakutiya). We selected this example as it has the highest157 

Raman shifts reported for quartz inclusions in garnet (Korsakov et al. 2009; Zhukov and 158 
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Korsakov 2015). Parallel polarized Raman spectra were collected in backscattering geometry 159 

with a Horiba Jobin-Yvon T64000 triple-monochromator spectrometer (spectral resolution of 160 

~2 cm–1, instrumental accuracy in peak positions of ~0.35 cm–1 and 2μm spot size) following 161 

the same protocol reported in Campomenosi et al. (2018). Figure 4 shows that the shift of the 162 

464 cm-1 Raman line changes significantly across the crystal as a consequence of edge and163 

corner effects (Campomenosi et al. 2018 and Mazzucchelli et al. 2018), and is lowest at the 164 

center of the inclusion. We determined the unit-cell parameters of the inclusion by single 165 

crystal X-ray diffraction measurements using the 8-position centering method (SINGLE, 166 

Angel and Finger, 2011) using a newly developed Huber 4-circle Eulerian cradle 167 

diffractometer equipped with point detector and microfocus source (120 μm spot size). The 168 

difference between the unit cell parameters of the inclusion a = 4.86669(44) Å, c = 169 

5.35408(14) Å and those of a free crystal measured on the same instrument (a = 4.91160(7) 170 

Å, c = 5.40325(9) Å) shows that the inclusion is under strains 𝜀1 = -0.00914(9), 𝜀3 = -171 

0.00910(26), and  𝜀V  =-0.02714(30). Relative to room conditions the quartz inclusion is172 

currently under isotropic strain within the experimental uncertainties. From these strains and 173 

the Grüneisen-tensor components for the mode near 464 cm-1 (i.e. 𝛾1
464 = 0.60 and 𝛾3

464174 

=1.19), we calculate an expected wavenumber shift of 10.12 cm-1. This is between the175 

minimum and maximum shifts actually measured on the inclusion (Figure 4) because the 176 

unit-cell parameters measured by X-ray diffraction are an average over the entire volume of 177 

the inclusion. Conversely, if we take the shifts of the Raman modes near 464 and 696 cm-1178 

measured at the center of the inclusion and the calculated mode Grüneisen components we 179 

predict the following strains: 𝜀1= -0.0093(5) and 𝜀3= -0.0070(5). In this case the total strain 180 

that is lower than that measured by X-ray diffraction, again because this method provides an 181 

average over the inclusion. 182 

183 
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Implications 184 

We have demonstrated by a combination of HF/DFT simulations and comparison to 185 

experimental Raman data that quartz has some Raman-active modes whose wavenumbers 186 

are only a function of strain (for small strains) and are not directly dependent on P and T. 187 

The HF/DFT simulations show also that in general the shift of a Raman line does not 188 

indicate either the volume change (or volume strain) or the mean normal stress but is a more 189 

complex function of the linear strains (Figure 3). The linear strains of a quartz inclusion can 190 

be determined from the wavenumber shifts of at least two Raman peaks by using the mode 191 

Grüneisen components determined by HF/DFT. Conversely, a wavenumber shift for a 192 

specific Raman-active mode can be determined from the linear strains measured by X-ray 193 

diffraction and by using the mode Grüneisen components determined by HF/DFT. We 194 

proved that strains and Raman shifts vary significantly across an inclusion (Figure 4) as a 195 

result of the influence of shape combined with elastic anisotropy (Mazzucchelli et al. 2018, 196 

Campomenosi et al. 2018), and should never be averaged. The Raman shifts measured in the 197 

center of inclusions are least affected by the presence of edges and should be the only ones 198 

used to infer, after shape corrections (Mazzucchelli et al. 2018), the entrapment conditions. 199 

On the other hand, X-ray diffraction measurements give strain components that are averaged 200 

over the entire volume of the investigated crystal. For the example discussed, the 201 

interpretation of wavenumber shift of the mode near 464 cm-1 measured at the center of the202 

quartz inclusion with the hydrostatic calculation (Schmidt and Ziemann 2000) leads to only a 203 

small error in the estimation of the mean normal stress (i.e. pressure) of ca. 0.03 GPa. This 204 

would lead to an error in the calculated entrapment pressure of 0.06 GPa. However, this is 205 

not always the case. When the deviatoric stress (Figure 1) in the inclusion is higher, the error 206 

is larger. For example, a quartz inclusion in garnet reset at 1.5 GPa and 1100°C during 207 

exhumation will have a wavenumber shift of the Raman mode near 464 cm-1 that would208 
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yield an entrapment pressure of 0.6 GPa too low when the hydrostatic calibration is used. In 209 

anisotropic hosts the discrepancy from the hydrostatic calibration also depends on the 210 

relative orientation of the host and inclusion. For example, for quartz in zircon the error in 211 

the calculated entrapment pressure can vary from 0.2 to 0.6 GPa for the same entrapment 212 

condition (i.e. 0.3 GPa and 800°C) depending on orientation. 213 

214 
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288 
Figure captions  

289 
Figure 1. Deviatoric stress |σ1 – σ3| in a quartz inclusion in a pyrope garnet (where σ1 and σ3 290 
are parallel to the a and c axes in quartz, respectively) at room conditions as a function of P 

291 
(GPa) and T (°C) of entrapment. The EoS of quartz and pyrope are from Angel et al. (2017) 

292 
and Milani et al. (2015). The anisotropic relaxation was calculated using the elastic tensors 

293 
for quartz and pyrope (Lakshtanov et al. 2007; Sinogeikin and Bass 2002). 

294 
Figure 2. The wavenumber shift (ω) of the 464 cm-1 mode of a free quartz crystal

295 
measured under different P, T and stress conditions form a single trend with volume strain 

296 

V. The deviation at positive strains is caused by the transition from α to β quartz that occurs297 

298 

299 

300 

301 

302 

303 

304 

at 573°C. Away from the transition, the experimental data are reproduced by both the 

HF/DFT simulations under hydrostatic pressure [red filled squares], and the prediction from 

the mode Grüneisen parameters (line). 

Figure 3. (a,b,c) Wavenumber shifts  (cm-1) of quartz calculated by HF/DFT as a function

of the two independent strain components (ε1= ε2 ≠ ε3). The reference value at zero strain is 

the ab initio datum at 0 K and 0 GPa (static pressure). The symbols indicate strains at which 

HF/DFT simulations were performed. The colored bands are the iso-shift lines (lines with the 

same frequency shift for a specific Raman mode). The iso-shift lines are 
305 
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approximately parallel to one another and equally spaced. The iso-shift lines are not parallel 306 

to isochors  defined by constant volume strain εV= 2ε1+ε3. (d) The iso-shift lines are not 307 

parallel to isobars, which are lines of equal pressure (2σ1+ σ3)/3= -P (GPa), meaning that, in 308 

general, Raman shifts do not measure either pressure or stresses.  309 

Figure 4. Wavenumber shifts of the 464 cm-1 and 696 cm-1 modes measured in a traverse310 

across a quartz inclusion in pyrope from the eclogite xenolith TM90-1 (Korsakov et 311 

al.2009). The phonon wavenumber shifts calculated from the strains determined by X-ray 312 

diffraction and the mode Grüneisen tensor are in good agreement with the average of the 313 

measured shifts. 314 

315 
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