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ABSTRACT 15 

Heat capacity (CP) data of Al-F-bearing titanite are presented that yield the standard 16 

entropy S°
298.15 of F-Al-titanite CaAlFSiO4 (FAT). CP of synthetic FAT was measured with 17 

relaxation calorimetry and differential scanning calorimetry between 5 and 764 K. The results 18 

constrain S°
298.15 to be 115.4 ± 2.0 J/mol.K and subsequently the standard Gibbs free energy of 19 

formation from the elements, fG° , of CaAlSiO4F to be between –2583 ± 3.0 kJ/mol and –20 

2588 ± 3.0 kJ/mol, and the standard enthalpy of formation from the elements, fH°
, to lie 21 

between –2728 ± 3.0 kJ/mol and –2733 ± 3.0 kJ/mol depending on the thermodynamic data 22 

retrieval approach. These data in turn can be used to quantitatively model high-grade and 23 

UHP fluid-rock interaction. The calculation of future petrogenetic grids involving F-bearing 24 

minerals and titanite solid solutions in the system CaTiSiO4O – CaAlSiO4F will only be 25 



possible by expanding existing internally consistent thermodynamic databases to the F-26 

system. 27 

 28 

INTRODUCTION 29 

Titanite [Ca(Ti,Al,Fe
3+

)SiO4(O,F,OH)] is a common accessory mineral in mafic, 30 

carbonate, pelitic and granitic rocks from many geologic environments (Higgins and Ribbe 31 

1976; Ribbe 1982; Enami et al. 1993). Because of its participation in net-transfer equilibria, 32 

titanite can be useful for the evaluation of pressure (P), temperature (T), and the fugacities of 33 

volatile components associated with metamorphic and igneous processes (e.g. Manning and 34 

Bohlen 1991; Frost et al. 2000; Troitzsch and Ellis 2002; Tropper et al. 2002; Tropper and 35 

Manning 2008; Hayden et al. 2008). Despite the importance of the F-Al content of titanite 36 

there are only few experimental data available with which to evaluate the physical and 37 

chemical controls on titanite solid solutions (Smith 1981; Troitzsch and Ellis 2002; Tropper et 38 

al. 2002). In high- and ultra high-pressure rocks, titanite and rutile also form the basis of a set 39 

of equilibria useful for the determination of pressure. Specific equilibria discussed by 40 

Manning and Bohlen (1991) and Tropper and Manning (2008) include: 41 

CaAl2Si2O8 + TiO2 = CaTiSiO5 + Al2SiO5 (1) 42 

Anorthite + Rutile = Titanite + Kyanite 43 

3Ca3Al2Si3O12 + 5TiO2 + 2SiO2 + H2O = 5CaTiSiO5 + 2Ca2Al3Si3O12(OH) (2) 44 

Grossular + Rutile + Quartz + H2O = Titanite + Zoisite  45 

Ca3Al2Si3O12 + 3TiO2 + SiO2 = 3CaTiSiO5 + Al2SiO5 (3) 46 

Grossular + Rutile + Quartz/Coesite = Titanite + Kyanite 47 

The successful application of reactions (1)-(3) to geothermobarometry illustrates the utility of 48 

titanite-bearing equilibria in petrology. However, the accuracy of the results depends on the 49 



availability of precisely measured thermodynamic data such as S°298.15, fG° and fH° which 50 

is the impetus of this study. 51 

 52 

PREVIOUS ENTROPY ESTIMATES AND CALORIMETRIC MEASUREMENTS 53 

In absence of calorimetrically measured low-temperature heat capacity data, the standard 54 

entropy (S°
298.15) of FAT can be estimated by applying additive techniques using S°298.15 of 55 

simple silicates and oxides (Robinson and Haas 1983; Holland 1989). This can be illustrated 56 

by two simple estimates as shown by Tropper et al. (2002). The first estimate is based on a 57 

reaction among orthosilicates, 58 

2CaAlSiO4F = Al2SiO4F2 + 2CaMgSiO4 – Mg2SiO4     (4) 59 

Al-F Titanite = Topaz + Monticellite – Forsterite  60 

and yields S°
298.15 for FAT (F-Al-titanite) of 105.2 J/mol.K. The second estimate uses a 61 

reaction among oxides and fluorides, where the data of the oxides were taken from Holland 62 

(1989) and fluorite was taken from Robie and Hemigway (1995) 63 

2CaAlSiO4F = CaF2 + CaO + Al2O3 + 2SiO2      (5) 64 

Al-F Titanite = Fluorite + Lime + Corundum + Quartz  65 

and gives S°
298.15 = 109.6 J/mol.K after applying a volume correction (Fyfe et al. 1958). 66 

Troitzsch and Ellis (2002) also estimated the standard entropy of FAT by summing the 67 

entropies of its components, taking into account any volume or coordination differences 68 

between the phase and its constituents. They chose the simple reaction: 69 

2CaAlSiO4F = CaAl2Si2O8 + CaF2 (6) 70 

Al-F Titanite = Anorthite + Fluorite 71 

The data for anorthite and fluorite were taken from Robie and Hemingway (1995), and based 72 

on the method by Fyfe et al. (1958) with volume correction, they obtained entropy estimates 73 

of CaAlFSiO4 between 105 and 112 J/mol.K with an uncertainty in all entropies discussed 74 



above on the order of ± 0.3 J/mol.K. Overall, the entropy estimates from both investigations 75 

are significantly lower than the entropy of titanite, CaTiSiO4O, which has been inferred to 76 

vary strongly and range from 107.8 J/mol.K (Xirouchakis and Lindsley 1998) to 129.3 77 

J/mol.K (King et al. 1954) to 131.2 J/mol.K (Holland and Powell 1998). On the other hand the 78 

FAT entropy estimates are comparable to S°
298.15 = 107.8 J/mol.K for synthetic titanite 79 

estimated by Xirouchakis and Lindsley (1998) but their S°
298.15 for titanite is too low to be 80 

consistent with the phase equilibrium constraints of Manning and Bohlen (1991). Manon et al. 81 

(2008) measured the heat capacity of synthetic titanite using PPMS (Physical Properties 82 

Measurement System) and obtained a value of 127.2 ± 0.2 J/mol.K and thus confirmed the 83 

adiabatic low-T data of King et al. (1954). 84 

Troitzsch and Ellis (2002) determined the heat capacity of FAT using the synthetic sample 85 

G297 of Troitzsch and Ellis (1999). This sample contains small amounts of F-bearing zoisite, 86 

fluorite, and traces of kyanite as determined using Rietveld analysis (Table 1). All 87 

measurements were carried out with a Perkin Elmer differential scanning calorimeter DSC 88 

2920 over the temperature range of 170 to 850 K. Their sample runs were performed at a 89 

heating rate of 20° min
-1

, from 170 to 850 K and two scans of FAT were performed and the 90 

mean of which was taken as the final value. The experimentally determined Cp of FAT 91 

increased smoothly with temperature (Fig. 1). Their experimental data were reproduced to 92 

within 1% (between 170 and 850 K) by the following equation based on Haas and Fisher 93 

(1976): 94 

 95 

CP = 689.96 – 0.38647T + 2911300T
-2 – 8356.1T

-0.5 + 0.00016179T
2 96 

 97 

In a second step Troitzsch and Ellis extrapolated the FAT heat capacity data to the 98 

experimental temperatures (1073 to 1273 K). Because no melting was observed in the run 99 



products, the heat capacity of FAT was assumed to increase smoothly beyond 850 K to at 100 

least 1273 K approaching the 'Dulong Petit limit' (Gopal 1966, Berman and Brown 1985). 101 

Their Figure 2b shows the extrapolation of the heat capacity data (250 to 850 K) to 1300 K, 102 

with an extended Maier and Kelley (1932) heat capacity polynomial (Haas and Fisher 1976) 103 

as: 104 

 105 

CP = 272.54 – 0.01319T – 2055700T
-2 – 1854.4T

-0.5 106 

 107 

Troitzsch and Ellis (2002) then estimated the calorimetric entropy of FAT at standard state 108 

(1 bar, 298.15 K). This thermodynamic quantity can be calculated if the heat capacity is 109 

known between 0 K and 298.15 K. But because their FAT heat capacity data were limited to 110 

above 170 K, they were extrapolated to 0 K based on vibrational theory, using the Debye 111 

model (e.g. Gopal 1966). Two alternative extrapolations of the Debye temperature to 0 K 112 

were considered, in order to cover the entire possible range of entropy values. Their model 1 113 

assumed a Debye temperature of 763 K, calculated from the lowest temperature data point 114 

and using it to compute Cp between 0 and 170 K. Model 2 extrapolated the drop in the Debye 115 

temperature with a 2nd degree polynomial function fitted to the DSC data between 170 and 116 

300 K. The calorimetric entropy estimated in this way was constrained to range between 117 

104.7 and 118.1 J/mol∙K (Troitzsch and Ellis 2002, Tab. 3). 118 

 119 

HEAT CAPACITY MEASUREMENTS 120 

The heat-capacity option of the Physical Properties Measurement System (PPMS), produced by Quantum 121 

Design®, is based on the principles of relaxation calorimetry and allows measurement of Cp values on 122 

milligram-sized samples enclosed in an aluminum pan (Dachs and Bertoldi 2005). The PPMS measurements 123 

were performed at the Department of Chemistry and Physics of Materials University of Salzburg, and were 124 

repeated three times at each temperature step. Fifty temperature set points between 5 and 300 K were measured 125 

for sample G-297 from Troitzsch and Ellis (1999) with a logarithmic spacing. Thirty set points between 3 and 10 126 



K using a linear spacing were additionally measured for this sample. Sample weights used in the PPMS 127 

measurements were 21.39 mg. Heat capacities between 282 K and 764 K were measured using a Perkin Elmer 128 

Diamond DSC in the same calorimetry laboratory at Salzburg University. The data are given in the electronic 129 

supplementary materials. More details of measuring and calibration procedures are given in Benisek et al. (2010) 130 

or Dachs et al. (2012a, b) and will not be repeated here. 131 

 132 

RESULTS AND DISCUSSION 133 

The agreement between PPMS and DSC CP data at ambient T is very good (the PPMS data 134 

are ~ 0.4 % larger). In order that the measured CP data can be compared to those obtained by 135 

Troitzsch and Ellis (2002), they were calculated to the same molar basis as used by these 136 

authors (i.e., the molar weight of 176.747 g/mol resulting from the microprobe analysis of 137 

synthetic FAT in sample G-297, Troitzsch and Ellis 1999, Tab. 1). As can be seen from Fig. 138 

1, measured CP of this study is smaller by 1-3 % in the temperature range 170 – 550 K, 139 

whereas the deviation at higher temperatures is less than 0.5 %. The low-temperature CP 140 

values were fitted to a combination of Debye, Einstein and Schottky functions (Boerio-Goates 141 

et al. 2002) and smoothed values for selected temperatures between 5 and 298.15 K are given 142 

in the electronic supplementary data in addition to the experimental CP data. The standard 143 

entropy of FAT was then derived by numerically integrating CP/T between 0 K and 298.15 K 144 

and a value of So
298.15 = 115.4 ± 2.0 J/mol∙K was obtained. This value lies within the range of 145 

104.7 and 118.1 J/mol∙K as estimated by Troitzsch and Ellis (2002) for So
298.15 by use of the 146 

Debye model to extrapolate their measured CP data from 170 K down to 0 K. We also tested 147 

the effect of impurities in sample G297 on the value of the derived standard entropy. Sample 148 

G297 is composed of 90 vol.% FAT, 6 vol.% F-bearing zoisite and 2 vol.% Fluorite (Tab. 1). 149 

In a first step vol.% were converted to mol % based on the molar volumes of the phases 150 

involved giving 92.5 mol% FAT, 2.3 mol% F-zoisite and 5.2 mol% fluorite (Tab. 1). The 151 

measured heat capacities were then recalculated to the molar weight of such a mechanical 152 

mixture (177.964 g/mol). Based on the relationship CP(measured) = 0.925 CP(FAT) + 0.023 153 



CP(Fzoi) + 0.052 CP(Fluorite), the heat capacity of end-member FAT was then computed 154 

using CP values for fluorite from JANAF Tables (Chase et al. 1985) and those for F-zoisite 155 

from PPMS measurements on OH-zoisite and then taking into account the replacement of OH 156 

by F based on PPMS data measured on synthetic Mg(OH)2 and MgF2 (E. Dachs, unpublished 157 

data). The fit deviation, i.e. 100*[(CP(measured) – CP(fit)]/ CP(fit), amounts to 5 ± 2 % in the 158 

lowest temperature range of 5–10 K, to 0.5 ± 0.4 % between 10 K and 50 K and to 0.3 ± 0.2 159 

% between 50 K and 298.15 K. The standard entropy of FAT derived from the so corrected 160 

Cp’s amounts to So
298.15 = 114.5 ± 2.0 J/mol∙K, which agrees within error with that derived 161 

above ignoring impurities (Geiger and Dachs 2018). The contents of impurities in sample 162 

G297 has thus only a minor effect on the derived final standard entropy value of FAT, as 163 

already suggested by Troitzsch and Ellis (2002). Fitting the DSC data to a polynomial as 164 

suggested by Berman and Brown (1985) yields: 165 

 166 

CP = 233.67 – 823.249∙T-0.5 – 8.41356∙106∙T-2 + 1.15956∙109∙T-3. 167 

 168 

This polynomial, valid for calculating the heat capacity of FAT at temperatures > 298.15 K, 169 

can be used for extrapolation beyond the experimental range and replaces that given in 170 

Troitzsch and Ellis (2002). 171 

Troitzsch and Ellis (2002) and Tropper et al. (2002) published studies on the 172 

thermodynamic properties of FAT. Based on displacement of reaction (6), Troitzsch and Ellis 173 

(2002) derived fH of –2740.8 ± 3 kJ/mol. This is in good agreement with the results of the 174 

study by Tropper et al. (2002) who performed reaction displacement experiments by adding 175 

fluorite to reaction (1) and this yielded fH of –2744 ± 3 kJ/mol. Troitzsch and Ellis (2002) 176 

performed experiments in the range of 800 - 1000°C and 0.5 to 2.1 GPa and measured the P- 177 

and T-dependence of XAl in titanite solid solutions in the assemblage F-Al titanite + anorthite 178 

+ fluorite based on reaction (6). From these P-T-XAl data, free-energy minimization allowed 179 



the simultaneous calculation of fH, So
298 and (WH-TWS) involving two activity models, a 180 

multi-site mixing model (MM) and a local charge balance model (LCB). The MM model 181 

assumes independent distribution of Al and F on each site [aCaTiSiO4O = (XTi
2)CaTiSiO4O] and the 182 

LCB model assumes coupled substitution of Al and F [aCaTiSiO4O = (XTi)CaTiSiO4O]. With this 183 

model, a So
298 = 111.13 J/mol∙K for FAT was derived, close to the calorimetric value of this 184 

study (115.4 ± 2.0 J/mol∙K). If the thermodynamic evaluation of the displacement 185 

experiments is repeated using this calorimetric value, a standard enthalpy of formation value 186 

fH = –2728.3 ± 3.0 kJ/mol is obtained for FAT. 187 

Tropper et al. (2002) calculated fH of CaAlSiO4F based on the shift of the reversals of the 188 

TARK reaction reaction (1) in the presence of fluorite using a regular mixing model for 189 

titanite solid solutions. By using the newly obtained So
298 and CP data this yielded a slightly 190 

higher fH° of –2733 ± 3.0 kJ/mol. The slight discrepancies in the values of fG and fH of 191 

F-Al titanite between the two studies are the result of differences in (i) the choice of the 192 

activity model and the estimated values of the interaction parameter W for the CaTiSiO4O – 193 

CaAlSiO4F solid solution and (ii) the experimental approach to determine the shift of the F-Al 194 

titanite involving reaction. 195 

 196 

IMPLICATIONS 197 

Previous studies have shown that titanite is an important petrogenetic indicator as well as a 198 

frequently used petrochronological tool in metamorphic rocks (e.g. Frost et al. 2000; Hayden 199 

et al. 2008; Kohn 2017). The basic thermodynamic data (So
298, fH°,fG°) from this study and 200 

previously obtained CaTiSiO5-CaAlSiO4F a-X relations and mixing models (Troitzsch and 201 

Ellis 2002; Tropper et al. 2002) provide the basic framework for the calculation of phase 202 

diagrams and petrogenetic grids involving F-Al-bearing titanite solid solutions with respect to 203 

the use of titanite as petrogenetic indicator for high-grade and UHP fluid-rock interaction 204 



involving F-bearing fluids (e.g. Franz and Spear 1985; Carswell et al. 1996; Markl and 205 

Piazolo 1998, 1999; Sengupta et al. 2004). Tropper and Manning (2007) have shown that 206 

fluorite solubility is quite high in deep crustal fluids and this means that F must become quite 207 

concentrated before fluorite will saturate. That is, dissolved F in fluids and minerals may be 208 

large even in the absence of fluorite, as indicated by F-rich minerals associated with granulite-209 

facies metamorphism (e.g. Chacko et al. 1987, Pan and Fleet 1996; Markl and Piazolo 1999; 210 

Tsunogae et al. 2003; Sengupta et al. 2004). Nonetheless first quantitative modeling of 211 

fluorite-F-Al titanite-involving reactions in the system CaO-CaF2-Al2O3-SiO2-H2O±CO2 212 

became only possible with the first thermodynamic data of F-Al titanite by Troitzsch and Ellis 213 

(2002). Therefore it is desirable to extend the calculation of fluorite-F-Al titanite equilibria to 214 

other chemical systems using the revised thermodynamic data from this study, which can only 215 

be accomplished by expanding existing internally consistent databases (e.g., 216 

THERMOCALC, Holland and Powell 1998), which are are notably deficient in minerals with 217 

volatile components such as F, Cl, S, P to F-bearing systems. This in turn will be the first step 218 

towards future quantitative evaluation of F-bearing minerals as petrogenetic indicators for 219 

fluid-rock interaction during metamorphic processes.  220 
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FIGURE CAPTIONS 1 
 2 
FIGURE 1. CP measurements of CaAlSiO4F of this study. The PPMS measurements are 3 
indicated with the black diamonds, DSC measurements with black squares and DSC data 4 
from Troitzsch and Ellis (2002, TE2002) with open triangles. 5 
 6 
 7 



Table 1: Mineral and bulk composition of sample G-297 
 
           Mineral Si Al Ca F O H Mmineral Vol.% Mol.% Msample 
FAT 0.999 1.005 0.996 0.916 4.016  176.747 90.3 92.5 163.491 
F-zo 2.968 3.010 2.021 0.330 12.531 0.448 452.777 5.8 2.3 10.414 
Fl       78.075 2.4 5.2 4.060 
       Total 98.5 100 177.964 
           The composition of F-bearing zoisite was taken from sample G295. Mmineral: molecular weight of the minerals, 
Msample: total molecular weight of the sample corrected for the abundance of the minerals. The conversion of 
Vol.% to Mol.% was done based on the molar volumes of phases involved. The modal amounts of quartz, 
kyanite, AgO and PdO were below detection limits. 
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