- 1 Na-P Concentrations in High-Pressure Garnets: A Potentially Rich, But Risky P-T
- 2 Repository
- 3

4 William Glass	ley
-----------------	-----

5 Department of Earth and Planetary Sciences, University of California, Davis 94550 and

- 6 Department of Geological Science, Aarhus University, Århus, Denmark
- 7

8 Establishing the history of HP and UHP metamorphic rocks is important for quantifying

9 Earth dynamics. The history of these rocks defines, among other things, paleo-subduction

10 rates, P-T paths, and the kinematics of continent-continent collision. Although the

11 appearance of certain minerals, such as coesite, stishovite or diamond, provides

12 unequivocal evidence of an HP or UHP component to the history of a rock, they cannot

13 provide details of the P-T-t path a rock has experienced. However, complex solid

14 solutions can. This reflects the fact that solid solutions have the potential to provide a

15 continuous thermodynamically-controlled response to evolving P-T conditions. To the

16 extent that such solid solution characteristics are preserved unmodified in a mineral

17 throughout its history, a detailed description of the trajectory of the rock during burial

- 18 and exhumation can be obtained.
- 19

20 Because of its common presence in UHP rocks and its diverse solid solution possibilities,

21 garnet has become a workhorse mineral phase for deciphering P-T conditions (Axler and

Ague, 2015; Liou et al., 2014). Among those of recent interest, solid solutions involving

23 phosphate and pyrope have attracted particular attention. Brunet et al. (2006) documented

24	that, at high pressure conditions (>8 GPa), there is continuous substitution of
25	$Na_3Al_2(PO_4)_3$ in garnet for $Mg_3Al_2(SiO_4)_3$. Their experimental study also established that
26	accommodation of the phosphate end member is limited. The pressure dependence of the
27	phosphate solubility suggested the possibility that sodium and phosphate in garnet may
28	be a potentially useful geobarometer for UHP metamorphic rocks and mantle
29	assemblages if a co-existing buffering phosphate phase were present. In the absence of a
30	coexisting buffer, it was still likely garnet could be utilized as an accurate monitor of
31	phosphate activity in the mantle.
32	
33	In this issue, Konzett reports on a much more detailed experimental study of this solid
34	solution in eclogitic compositions and related partial melt formation. His experiments are
35	consistent with previously reported results, thus confirming the solid solution series.
36	However, the results place important caveats on the usefulness of P in garnet as a
37	potential geobarometer. Under mid-crustal conditions, the P-end member garnet is not
38	stable, resulting in Na-P depletion in garnets via several possible pathways. In this case,
39	although rapid uplift may well result in preservation of the high pressure Na-P content in
40	the garnet, slow or episodic uplift will encourage re-equilibration. Complicating this
41	process, too, is evidence from the experiments of uptake of Mg and P in kyanite (i.e.,
42	${}^{[4]}P^{[6]}Mg^{[4]}Si_{-1}{}^{[6]}Al_{-1}$). These reactions, along with decreasing solubility of
43	NaCa ₂ (AlTi)(SiO ₄) ₃ in garnet, may result in coupled interactions that affect Na-P in
44	garnet, rutile saturation and apatite formation upon decompression (e.g., Ye et al., 2000;
45	Zhang et al., 2003). For eclogitic compositions, these results suggest that serious
46	consideration must be given to the likelihood that Na-P in garnet, and rutile and apatite

47	development will usually represent post-peak processes and conditions, not peak
48	metamorphic P-T. Phase equilibria models and geobarometers relying on these phases or
49	component concentrations will thus likely record post-peak conditions. For instances in
50	which exchange equilibrium was not achieved, meaningless P-T values will result.
51	
52	An important constraint on applying these results to existing research, however, is the
53	inadequacy of most EMP analyses of garnets for Na and P. These components are not
54	usually analyzed under conditions that result in highly precise and accurate concentration
55	measurements – either long counting times and elevated beam current to achieve P
56	accuracy result in Na volatilization or low currents and brief counting times to prevent Na
57	loss result in low P accuracy. Given the important information that could be developed
58	using these elements in multi-phase study of HP and UHP rocks, it would be useful to
59	develop routine methods for EMP analyses of Na and P in garnet, kyanite and pyroxenes
60	that generate results of sufficient precision and accuracy to be useful.
61	
62	REFERENCES
63	Axler, J.A. and Ague, J.J. (2015). Oriented multi-phased needles in garnet from
64	ultrahigh-temperature granukites, Connecticut, U.S.A. American Mineralogist 100, 2254-
65	2271.
66	Brunet, F., Bonneau, V. and Irifune, T (2006). Complete solid-solution between
67	$Na_3Al_2(PO_4)_3$ and $Mg_3Al_2(SiO_4)_3$ garnets at high pressure. American Mineralogist 91,
68	211-215.

- 69 Liou, J.G., Tsujimori, T., Yang, J., Zhang, R.Y. and Ernst, W.G. (2014). Recycling of
- 70 crustal materials through study of ultrahigh-pressure minerals in collisional orogens,
- ophiolites, and mantle xenoliths: A review. Journal of Asian Earth Sciences 96, 386-420.
- 72 Ye, K., Kong, B.L. and Ye, D.I. (2000). The possible subduction of continental material
- to depths greater than 200 km. Nature 407, 734-736.
- 74 Zhang, R.Y., Zhai, S.M., Fei, Y.W. and Liou, J.G. (2003) Titanium solubility in
- 75 coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved
- rutile in garnet. Earth and Planetary Science Letters 216, 591-601.