1	Revision 1
2	The S content of silicate melts at sulfide saturation: new experiments and a
3	model incorporating the effects of sulfide composition
4	
5	Duane J. Smythe*, Bernard J. Wood and Ekaterina S. Kiseeva
6	
7	Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1
8	3AN, UK.
9	
10	* E-mail: duane.smythe@earth.ox.as.uk
11	
12	Abstract
13	
14	The extent to which sulfur dissolves in silicate melts saturated in an immiscible
15	sulfide phase is a fundamental question in igneous petrology and plays a primary role
16	in the generation of magmatic ore deposits, volcanic degassing and planetary
17	differentiation. In igneous systems sulfide melts can be described as FeS-NiS-CuS $_{0.5}$
18	solutions with Fe/(Fe+Ni+Cu) significantly less than 1. Despite the presence of Ni
19	and Cu in the sulfide, however most experimental studies to date have concentrated
20	on the effects of silicate melt composition on sulfur solubility and have used
21	essentially pure FeS as the sulfide liquid.
22	
23	We have carried out 49 new experiments at pressures of 1.5-24 GPa and temperatures
24	of 1400 to 2160°C in order to investigate the effects of sulfide composition on sulfur
25	solubility as well as extending the pressure and temperature ranges of the available

26	data on sulfide saturation. We find that, in the compositional range of most igneous
27	sulfide melts (Fe/(Fe+Ni+Cu) >0.6) sulfur solubility decreases linearly with Fe
28	content such that at Fe/(Fe+Ni+Cu) of 0.6, the sulfur content at saturation is 0.6 times
29	the value at pure FeS saturation. At lower values of Fe/(Fe+Ni+Cu) deviations from
30	this ideal solution relationship need to be taken into consideration, however. We have
31	treated these nonidealities by assuming that FeS-NiS-CuS _{0.5} liquids approximate
32	ternary regular solutions.
33	
34	We have fitted our data, together with data from the literature (392 in total) to
35	equations incorporating the effects of silicate melt composition, sulfide liquid
36	composition and pressure on the solubility of sulfur at sulfide saturation [S] _{SCSS} . The
37	temperature dependence of $[S]_{SCSS}$ was assumed either to be an unknown or was taken
38	from 1 bar thermodynamic data. The most important best-fit silicate melt
39	compositional term reflects the strongly positive dependence of [S] _{SCSS} on the FeO
40	content of the silicate melt. The best-fit value of this parameter is essentially
41	independent of our assumptions about temperature dependence of $[S]_{SCSS}$ or the
42	solution properties of the sulfide.
43	
44	All natural compositions considered here exhibit positive dependences of $[S]_{SCSS}$ on
45	temperature and negative dependences on pressure, in accord with previous studies
46	using smaller datasets.
47	
48	Keywords: sulfur solubility, silicate melt, sulfide, MORB
49	
50	Introduction

51

52	The solubility of sulfur in silicate melts is a subject which attracts the attention of
53	metallurgists interested in the conditions under which immiscible sulfide mattes
54	segregate from silicate slags (e.g. Fincham and Richardson 1954) and of geologists
55	concerned with the behaviour of sulfur and chalcophile elements during igneous
56	processes. In the former case, the work of Fincham and Richardson led to a
57	quantitative model for the solubility of S (as S^{2-}) and its dependence on oxygen and
58	sulfur fugacities. In the latter the dependence of sulfur solubility on silicate melt
59	composition and temperature control volcanic degassing (Fischer et al., 1998;
60	Wallace, 2005) and the formation of magmatic sulfide ore deposits (Li and Ripley,
61	2005; Mungall, 2007). Sulfide liquid precipitates during the differentiation of MORB
62	(Peach et al., 1990) thereby controlling the concentrations of chalcophile elements
63	such as Cu, Ag, Tl and the PGE's in the crystallising silicate melts. Precipitation of
64	immiscible sulfide and sulfur solubility may also be important during planetary
65	accretion and differentiation (Holzheid and Grove, 2002; Wood et al., 2014). For
66	these reasons there have been numerous experimental investigations of the processes
67	that control the incorporation of sulfur in naturally-occurring silicate melts (e.g.Shima
68	and Naldrett, 1975; Mavrogenes and O'Neill, 1999; O'Neill and Mavrogenes, 2002;
69	Li and Ripley, 2005; Liu et al., 2007).
70	

At relatively low oxygen fugacities (i.e. below that of the fayalite-magnetite- quartz
(FMQ) buffer) Fincham and Richardson (1954) proposed that sulfur dissolves in
silicate melts as S²⁻ and that it substitutes for oxygen on the anion sublattice via the
reaction

$$0^{2-} + \frac{1}{2}S_2 = S^{2-} + \frac{1}{2}O_2 \qquad (1)$$

75

In silicate melts the concentrations of O^{2-} are generally two or more orders of magnitude greater than those of S^{2-} , even at sulfide saturation. Given this constraint we can take the O^{2-} concentration on the anion sublattice to be constant and rearrange the equilibrium constant for reaction (1) to yield the Fincham - Richardson relationship (Fincham and Richardson, 1954):

$$\ln C_{\rm S} = \ln [\rm S] + \frac{1}{2} \ln(f O_2 / f S_2)$$
(2)

83	In Equation (2) $C_{\rm S}$ is the sulfide capacity of the melt (analogous to the equilibrium
84	constant), and [S] is the concentration of sulfur, usually in ppm. Fincham and
85	Richardson (1954) experimentally verified the relationship of Equation (2) by
86	measuring sulfur contents of silicate melts in the system $CaO-Al_2O_3-SiO_2$ at fixed
87	values of fS_2 and fO_2 . In the geologic literature, most interest has been on the
88	conditions of sulfide saturation and precipitation of sulfides from basaltic and related
89	liquids (e.g. Haughton et al. 1974, Katsura and Nagashima, 1974, Wallace and
90	Carmichael, 1992). Nevertheless, O'Neill and Mavrogenes (2002) broadened the
91	scope of study by measuring the concentrations of S in 19 melts in the geologically
92	relevant system CaO-MgO-Al_2O_3-SiO_2 \pm TiO_2 \pm FeO. They showed that, at 1400°C
93	and known fS_2 and fO_2 between -3.36 and 1.59, and -10.92 and -6.78, respectively, all
94	19 melts obey the Fincham - Richardson relationship.
95	
96	Because of its geologic importance and the large number of data currently available,
97	our study has been primarily concerned with the conditions of sulfide saturation in
98	silicate melts of different composition over wide ranges of pressure and temperature.

- 99 In this context we begin by assuming that the Fincham Richardson relationship
- 100 applies to all melts of geologic interest. Equilibrium between sulfide and silicate melt
- 101 may then be described in terms of the reaction:

102

$$\operatorname{FeO}^{silicate} + \frac{1}{2}S_2 = \operatorname{FeS}^{sulfide} + \frac{1}{2}O_2 \qquad (3)$$

103

104 for which, at equilibrium we have:

105

$$\Delta G^{\circ} = -RT \ln \frac{a_{\text{FeS}}^{sulfide} \cdot fO_2^{-1/2}}{a_{\text{FeO}}^{silicate} \cdot fS_2^{-1/2}}$$
(4)

106

107 where ΔG° is the standard state free energy change of reaction (3) and activities and 108 fugacities of the 4 components have their usual symbols. Rearranging Equation (4) we 109 obtain:

110

$$\frac{\Delta G^{\circ}}{RT} = \ln a_{\rm FeO}^{silicate} - \ln a_{\rm FeS}^{sulfide} - \ln \frac{f 0_2^{-1/2}}{f S_2^{-1/2}}$$
(5)

111

112 We may now substitute from Equation (2) for the ratio of oxygen to sulfur fugacity as

- 113 follows:
- 114

$$\ln[S]_{SCSS} = \frac{\Delta G^{\circ}}{RT} + \ln C_{S} + \ln a_{FeS}^{sulfide} - \ln a_{FeO}^{silicate}$$
(6)

116 In Equation (6), $[S]_{SCSS}$ refers to the sulfur content of the silicate melt at sulfide 117 saturation and $a_{FeS}^{sulfide}$ and $a_{FeO}^{silicate}$ to the activities of FeS and FeO components in 118 sulfide and silicate melts respectively.

119

120	Inspection of Equation (6) enables us to consider, qualitatively, the important
121	influences on the sulfur content of any particular melt at sulfide saturation. The
122	standard state free energy change of the reaction ΔG° depends on pressure and
123	temperature which requires that $[S]_{SCSS}$ is also <i>P</i> - <i>T</i> dependent. Measurements of C_S ,
124	and of sulfur concentrations at sulfide saturation have demonstrated that $C_{\rm S}$ is
125	composition-dependent, most notably varying strongly and positively with the FeO
126	content of the silicate melt. In contrast, the term in $a_{\text{FeO}}^{silicate}$ requires an increase in S
127	content with decreasing FeO content of the silicate melt. There is thus a trade-off
128	between the positive contribution of FeO to $[S]_{SCSS}$ and the negative effect of $a_{FeO}^{silicate}$
129	on sulfur solubility which leads to a theoretical U-shape of a plot of $[S]_{SCSS}$ versus
130	FeO content (O'Neill and Mavrogenes, 2002 fig 21). Thus, most attempts to model
131	[S] _{SCSS} have emphasized the major compositional terms for the silicate melt. Pressure
132	effects have also been shown to be very important (e.g Holzheid and Grove, 2002,
133	Mavrogenes and O'Neill, 1999). Much less attention has been paid to the composition
134	of the sulfide melt, however, as represented by $a_{\text{FeS}}^{sulfide}$ in Equation (6) (Ariskin, et al.
135	2013). Instead, almost all experimental measurements to date have used pure FeS as
136	the sulfide phase, with the implicit assumption that lowering $a_{\text{FeS}}^{sulfide}$ by diluting Fe
137	with other cations has no effect on sulfur solubility. Equation (6) indicates, however,
138	that S solubility must decrease as FeS activity decreases, meaning that, in general it
139	must be lower than is implied by pure FeS saturation. Immiscible droplets of sulfide
140	in basalt contain up to 18 and 20 wt% Ni and Cu respectively (Francis, 1990; Patten et

141	al 2013), which means that the sulfide is only about 60% FeS by mole. Despite these
142	observations, and the appreciable effort made, to date, to determine S solubility in
143	silicate melts, there are few data enabling the effects of dilution of Fe by other cations
144	to be evaluated. One major goal of the present experimental study is to address this
145	fundamental question and to quantify the effects of Ni and Cu substitutions on FeS
146	activity and hence on $[S]_{SCSS}$ in relevant natural compositions. To this end we have
147	performed 49 new experiments at 1.5 to 24 GPa and 1400 to 2160°C with immiscible
148	sulfide melt compositions ranging from pure FeS to nearly pure NiS and $CuS_{0.5}$. The
149	new data enable us to quantify the effects of Ni and Cu substitution for Fe as well as
150	providing the basis, together with literature data, for determining the effects of
151	pressure and temperature and silicate melt composition on [S] _{SCSS} .
152	
153	Experimental and Analytical Procedures
154	
155	Experimental methods
156	
157	Starting materials consisted of mixtures of ~50% (Fe,Ni,Cu ₂)S and ~50% synthetic
158	silicate, by weight. The sulfide component consisted of mixtures of analytical grade
159	FeS, NiS and $CuS_{0.5}$. The silicate constituent was in many cases a composition close
160	to the 1.5 GPa eutectic composition in the system anorthite-diopside-forsterite
161	$(An_{50}Di_{28}Fo_{22})$ (Presnall et al., 1978) with variable $Fe_{0.95}O$ added , but a range of
162	basaltic, and esitic and komatiitic compositions was also employed. All components
163	
	were added to these mixtures either as analytical grade oxides (SiO ₂ , TiO ₂ , Al ₂ O ₃ ,
164	were added to these mixtures either as analytical grade oxides $(SiO_2, TiO_2, Al_2O_3, MgO, Fe_2O_3, MnO_2, P_2O_5)$ or as carbonates $(Na_2CO_3, K_2CO_3, CaCO_3)$. The silicate
164 165	

166	was added, mixtures were reground, pelletized and reduced in a CO-CO_2 atmosphere
167	for 2 hours at 1000°C and an oxygen fugacity approximately 2 log units above the IW
168	buffer. Silicate and sulfide constituents were intimately mixed in approximately 50:50
169	proportions prior to each experiment. Additional Fe (as Fe _{0.95} O) was added to some
170	experiments in order to increase FeO activity. The starting mixtures were dried at
171	110°C immediately before the experiment.
172	
173	Most experiments were performed at 1.5 and 2.5 GPa using a 12.7 mm diameter

6 mm inside diameter and internal parts of machineable MgO. Most experiments were
performed in 3.0 mm O.D., 1 mm I.D. graphite capsules, a subset of which were
sealed in Pt outer capsules. A few experiments were performed in SiO₂ glass capsules.

Boyd-England-type piston-cylinder apparatus at the University of Oxford. The sample

cell employed an outer sleeve of pressed CaF₂, a graphite heater of 8 mm outside and

174

175

179 Experiment durations were fixed at times substantially longer than those required to

180 reach sulfide-silicate and metal-silicate partitioning equilibrium in capsules of 1 mm

181 inner diameter {Tuff, et al. 2011;Kiseeva and Wood 2013) For piston-cylinder

182 experiments at 1500°C and higher temperatures the outer calcium fluoride sleeve was

183 replaced by an outer thin-walled BaCO₃ cylinder with an inner sleeve of SiO₂ glass.

184 All temperatures were monitored and controlled using W₉₅Re₅-W₇₄Re₂₆

thermocouples housed in alumina sheaths and separated from the capsule by a 0.6 mm

186 thick alumina disk. Experiments at 5.5 and 7 GPa employed a Walker-type multianvil

- 187 apparatus and cast MgO-based octahedra. The furnace assemblies consisted of
- 188 straight graphite heaters inside ZrO_2 sleeves and the capsules were, as before
- 189 fabricated from graphite. One experiment was performed at 24 GPa/ 2160°C at the
- 190 Bayerisches Geoinstitut, Universität Bayreuth. In this case the capsule was made of

191 single-crystal MgO. As for the piston-cylinder experiments, all multianvil

192 experiments employed W-Re thermocouples, in these cases in direct contact with the

193 capsule. Experimental run conditions and starting compositions are given in Table 1.

194

195 Analytical techniques

196

197 Experimental products were analysed using a JEOL JXA8600 electron microprobe

198 housed in the Department of Archaeology at the University of Oxford. Silicate glasses

199 were analyzed by wavelength dispersive spectroscopy (WDS) employing a 15 kV

200 accelerating voltage and a 35-40 nA beam current. The spot was typically defocused

201 to10 µm diameter. Standards used for silicate glass analysis include natural

202 wollastonite (Si, Ca), natural jadeite (Na, Al) synthetic periclase (Mg), rutile (Ti),

203 hematite (Fe), NdPO₄ (P), orthoclase (K) and galena (S). Natural almandine and

204 natural S-bearing glasses VG-1 and L17 were used as secondary standards for S.

205 Counting times were as follows: 30 s peak and 15 s background for major elements

206 (Si, Al, Ca, Mg, Fe); 60 s peak and 30 background for minor elements (Na, K, Ti, P);

207 180 s peak and 90 s background for S. Analysis of sulfides by WDS used a 15 kV

208 accelerating voltage, a 20 nA beam current and a defocused beam, generally of 10

 μ m, but occasionally of 15 μ m diameter for the most heterogeneous quenched liquids.

210 Standards for sulfide analysis consisted of Hematite (Fe, O), galena (S), Ni metal (Ni)

and Cu metal (Cu). Count times were 30 s peak and 15 s background for Fe and S,

and 60 s peak and 30 s background for Ni and Cu. Oxygen in the sulfide was

213 measured using the K_{α} peak and a LDE pseudocrystal (Kiseeva and Wood, 2013) with

- 214 count times of 100 s peak and 50 s background. There was no evidence of strong
- 215 heterogeneity in oxygen contents, as might have been expected if there were large

- 216 grains of quenched oxide within the sulfide blobs. Electron microprobe analyses of
- silicate and sulfide run products are provided in Table 2.
- 218
- 219 Results
- 220

221 O'Neill and Mavrogenes (2002) followed Haughton et al. (1974) in treating the

222 measured sulfide capacity as a parameter with simple dependence on the mole

- fractions $X_{\rm M}$ of the single metal oxide components (SiO₂, AlO_{1.5}, MgO etc)
- 224

$$\ln C_{\rm S} = A_0 + \sum_{\rm M} X_{\rm M} A_{\rm M} / T \qquad (7)$$

225

The rationale for this approach is that the $A_{\rm M}$ are related to the differences between the standard state free energies μ° of oxide and sulfide components of the cations of interest (ie MgO, MgS, Si_{0.5}O, Si_{0.5}S etc). This gives the following theoretical form for $C_{\rm S}$:

230

$$\ln C_{\rm S} = -\ln \gamma_{\rm S} + \sum_{\rm M} X_{\rm M} (\mu_{\rm M_zO}^{\rm o} - \mu_{\rm M_zS}^{\rm o}) / RT \qquad (8)$$

231

In Equation (8), $(\mu_{M_zO}^0 - \mu_{M_zS}^0)$ is the standard state free energy difference between oxide and sulfide components of M and γ_S is the activity coefficient of S in the silicate melt. Replacing C_S in Equation (6) with the form of Equation (7) leads to:

$$\ln[S]_{SCSS} = \frac{\Delta G^{\circ}}{RT} + A_0 + \sum_{M} X_M A_M / T + \ln a_{FeS}^{sulfide} - \ln a_{FeO}^{silicate}$$
(9)

236

237	O'Neill and Mavrogenes (2002) used tabulated thermodynamic data to obtain ΔG° at
238	1 bar then regressed their $C_{\rm S}$ data at 1400°C and 1 bar to an equation of similar form
239	to (8) except, since their experiments were isothermal, the dependence of the
240	compositional $X_M A_M$ terms on temperature $(X_M A_M/T)$ was ignored. If we use their
241	results at face value, all of the regressed $A_{\rm M}$ terms are positive and ΔG° has a negative
242	temperature dependence. This means that [S] _{SCSS} should <i>decrease</i> with increasing
243	temperature irrespective of whether or not we treat the $X_M A_M$ terms as having
244	dependences on reciprocal temperature. All observations to date, however, including
245	our own, demonstrate that [S] _{SCSS} increases with increasing temperature. This means
246	either that the temperature dependence of ΔG° derived from tabulated thermodynamic
247	data is profoundly in error or that the $X_M A_M$ terms of Equation (9) are predominantly
248	negative. Although we consider that the former is unlikely, we have treated the data in
249	two fundamentally different ways in order to resolve this issue. Firstly, we treated
250	ΔG° and its temperature and pressure dependences as unknowns. In this case we
251	divide $\Delta G^{\circ}/RT$ into enthalpy (ΔH°), entropy (ΔS°) and molar volume terms (ΔV°) as
252	follows:

253

$$\frac{\Delta G^{\circ}}{RT} = \frac{\Delta H^{\circ}}{RT} - \frac{\Delta S^{\circ}}{R} + \frac{P\Delta V^{\circ}}{RT} = \frac{A}{T} + B + \frac{CP}{T}$$
(10)

254

255 Combining Equations (9) and (10) yields,

256

$$\ln[S]_{SCSS} = \frac{A}{T} + B' + \frac{CP}{T} + \sum_{M} X_{M}A_{M}/T + \ln a_{FeS}^{sulfide} - \ln a_{FeO}^{silicate}$$
(11)

257

- 258 where B' is the sum of the entropy term in Equation (10) and A_0 from Equation (7).
- 259 We now use Equation (11) as one of the bases for our regression of $\ln[S]_{SCSS}$ as a
- 260 function of compositional terms $A_{\rm M}$, pressure and temperature.
- 261
- 262 Our second approach was to assume that the tabulated thermodynamic data are
- 263 correct and to adopt the 1 bar values of ΔG° given by O'Neill and Mavrogenes
- 264 (2002). This gives the following equation:

265

$$\ln[S]_{SCSS} = \frac{14695}{T} - 9.656 + 1.02 \ln T + B' + \frac{CP}{T} + \sum_{M} X_{M} A_{M} / T + \ln a_{FeS}^{sulfide}$$
$$- \ln a_{FeO}^{silicate} \quad (12)$$

266

- In Equation (12) the only part of ΔG° which is treated as unknown is the pressure-267
- dependence, with fit parameter C. The parameter B' in this case corresponds to A_0 of 268
- 269 Equation (7)
- 270

271 Linear least-squares regression

272

273 We have a total of 392 experimental data (Table S1), 343 from previous studies and

274

49 from this work as the basis of our fits to Equations (11) and (12). These include

- 275 data on hydrous melts containing up to 8.5 wt% H₂O equilibrated under conditions
- 276 where the FeS-rich sulfide was a liquid. Note that we have explicit terms for the effect
- 277 of H on [S]_{SCSS} in our fits of equations (11) and (12) (Table 3). We started with the
- assumption that $a_{FeO}^{silicate}$ is equal to the mole fraction of FeO in the silicate melt on a 278
- 279 single cation basis using components FeO, SiO₂, AlO_{1.5} and so on. In practise, FeO

280	has an activity coefficient close to 1 in silicate melts over a fairly wide compositional
281	range (Wood and Wade, 2013). The ideal approximation should, therefore, be
282	adequate for our needs, particularly since any compositional dependence of $\gamma_{\text{FeO}}^{silicate}$
283	will be absorbed by the $A_{\rm M}$ terms of Equations (11) and (12). An exception to this are
284	experiments done at highly reducing conditions (i.e. below the iron-wüstite oxygen
285	buffer). Silicate melts in equilibrium with sulfide melt under these conditions contain
286	less than 1 wt% FeO. Based on sulfide/silicate trace element partitioning (Wood and
287	Kiseeva, 2015) at these low FeO concentrations $\gamma_{\text{FeO}}^{silicate}$ decreases by at least an order
288	of magnitude and our assumption that $\gamma_{\text{FeO}}^{\text{silicate}}$ is unity is no longer valid. To avoid
289	these unusual compositions biasing our results we have therefore excluded from the
290	regression six experiments with $\text{FeO}_{Sil}/\text{FeS}_{Sul}$ ratios of less than 0.01. These are
291	nevertheless shown in Figure 1 for comparison with the remaining 392 data.
292	
292 293	Kiseeva and Wood (2013, 2015) have shown that, to a good approximation, sulfide
	Kiseeva and Wood (2013, 2015) have shown that, to a good approximation, sulfide liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when
293	
293 294	liquids in igneous systems can be treated as ideal FeS-NiS-CuS $_{0.5}$ solutions when
293 294 295	liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when trace element partitioning between sulfide liquids and silicate melts is considered. We
293 294 295 296	liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when trace element partitioning between sulfide liquids and silicate melts is considered. We therefore began by approximating $a_{\text{FeS}}^{sulfide}$ by $X_{\text{FeS}}^{sulfide}$ where X is equal to
293 294 295 296 297	liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when trace element partitioning between sulfide liquids and silicate melts is considered. We therefore began by approximating $a_{\text{FeS}}^{sulfide}$ by $X_{\text{FeS}}^{sulfide}$ where X is equal to Fe/(Fe+Ni+Cu). Following Kiseeva and Wood (2013) we took no explicit account of
293 294 295 296 297 298	liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when trace element partitioning between sulfide liquids and silicate melts is considered. We therefore began by approximating $a_{\text{FeS}}^{sulfide}$ by $X_{\text{FeS}}^{sulfide}$ where X is equal to Fe/(Fe+Ni+Cu). Following Kiseeva and Wood (2013) we took no explicit account of the presence of oxygen in the sulfide. Kiseeva and Wood (2013) found that the FeO
293 294 295 296 297 298 299	liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when trace element partitioning between sulfide liquids and silicate melts is considered. We therefore began by approximating $a_{FeS}^{sulfide}$ by $X_{FeS}^{sulfide}$ where X is equal to Fe/(Fe+Ni+Cu). Following Kiseeva and Wood (2013) we took no explicit account of the presence of oxygen in the sulfide. Kiseeva and Wood (2013) found that the FeO content of the sulfide (in weight %) is approximately the same as the FeO content of
293 294 295 296 297 298 299 300	liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when trace element partitioning between sulfide liquids and silicate melts is considered. We therefore began by approximating $a_{FeS}^{sulfide}$ by $X_{FeS}^{sulfide}$ where <i>X</i> is equal to Fe/(Fe+Ni+Cu). Following Kiseeva and Wood (2013) we took no explicit account of the presence of oxygen in the sulfide. Kiseeva and Wood (2013) found that the FeO content of the sulfide (in weight %) is approximately the same as the FeO content of the silicate in weight %. Nevertheless, they found that making explicit provision for
293 294 295 296 297 298 299 300 301	liquids in igneous systems can be treated as ideal FeS-NiS-CuS _{0.5} solutions when trace element partitioning between sulfide liquids and silicate melts is considered. We therefore began by approximating $a_{FeS}^{sulfide}$ by $X_{FeS}^{sulfide}$ where X is equal to Fe/(Fe+Ni+Cu). Following Kiseeva and Wood (2013) we took no explicit account of the presence of oxygen in the sulfide. Kiseeva and Wood (2013) found that the FeO content of the sulfide (in weight %) is approximately the same as the FeO content of the silicate in weight %. Nevertheless, they found that making explicit provision for the entropy of mixing of O ²⁻ into the S ²⁻ sublattice in FeS liquids using a Temkin-like

304

305	Step-wise linear-regression of the dataset to equations (11) and (12) was carried out
306	using the statistics package SPSS® with the requirement that fit parameters pass the
307	F-test at F of 0.05. The results of the regression are presented in Table 3.
308	If we treat ΔG° and its temperature and pressure dependences as unknowns (Equation
309	11) then we find that $\Delta G^{\circ}/RT$ has a negative temperature-dependence which is
310	compensated-for, as predicted, by negative values of almost all the $A_{\rm M}$ parameters.
311	Thus, [S] _{SCSS} increases with increasing temperature because the negative A_M/T terms
312	become smaller with increasing temperature. Note that we tested the possibilities of
313	adding cross-terms of the form $X_i X_j A_{ij}$ but found that only the $X_{Si} X_{Fe}$ term is
314	significant. It is this term which controls the positive effect of FeO on S solubility.
315	Note also that we have data for silicate melts containing between 0.3 and 40.1
316	weight% FeO, so the effect of FeO on S solubility is very well constrained.
317	
318	Our second set of regressions assumed that ΔG° derived from thermodynamic data is
319	correct and involved the fitting of Equation (12) to the same 392 data as before. In
320	this case (Table 3) we have a slightly improved r^2 (0.977 instead of 0.963) and the
321	negative $A_{\rm M}$ terms are all smaller than those obtained from the fit to Equation (11).
322	This is because the temperature-dependence of ΔG° obtained from thermodynamic
323	data is much less negative than that obtained by treating ΔH° and ΔS° as unknowns.
324	Hence, the magnitudes of the negative terms required to compensate for the
325	temperature dependence of ΔG° and to produce the observed positive temperature
326	dependence of $[S]_{SCSS}$ are smaller if ΔG° is fixed at the tabulated value from
327	thermodynamic data. As one might expect, the pressure term is, within uncertainty the
328	same in both cases. Interestingly, the positive $X_{Si}X_{Fe}$ term is also the same in both
329	cases within uncertainty. We consider therefore that this large positive cross-term is

- 330 well-constrained and realistic since it does not depend significantly on the
- assumptions made about the standard state free energy change of the sulfur
- 332 dissolution reaction.
- 333
- 334 Figure 1 shows the results of the regression plotted as calculated ln[S]_{SCSS} versus the
- 335 observed value for all 392 data used in the regression as well as the six experiments
- done under highly reducing conditions. 351 of 398 calculated [S]_{SCSS} values fall
- 337 within the range of 0.667-1.5 times the observed S concentrations, which we consider
- an excellent result considering the ranges of pressure (1 bar-24 GPa), temperature
- 339 (1150-2160°C), FeO content of silicate (0.3-40.1%) sulfide composition covering the
- 340 entire range of the FeS-NiS-CuS $_{0.5}$ system employed in the regression.
- 341

342 Effects of temperature, pressure and silicate melt composition

- 343
- 344 Figure 2a shows the effects of FeO content on S concentration at FeS saturation for
- 345 melts ranging in composition from komatilitic to andesitic. Silicate melt compositions
- 346 are given in Table 4. As anticipated from equation (6) calculated [S]_{SCSS} is a u-shaped
- 347 function of FeO content because of the trade-off between the positive coupling
- 348 between S and FeO in the silicate and the negative influence of $a_{\text{FeO}}^{silicate}$ on S
- 349 solubility (O'Neill and Mavrogenes, 2002). Our model predicts that the solubility of S
- 350 in silicate melts should reach a minimum at approximately 5 wt% FeO which is
- 351 broadly consistent with the work of Li and Ripley (2005). The result disagrees,
- however, with the expressions of Holzheid and Grove (2002) and Fortin et al. (2015)
- 353 which do not take account of the term in $a_{\text{FeO}}^{silicate}$ required by Equation (6).
- 354

355	As can be seen in Figure 3a all compositions show a positive dependence of $[S]_{SCSS}$
356	on temperature. Note that results are, in some cases, extrapolated to temperatures
357	below those of the silicate liquidi. Figure 3b shows a comparison of our results for
358	[S] _{SCSS} with literature models of S contents at FeS saturation for the MORB
359	composition of Table 4. The latter are based on more limited datasets than that which
360	was available to us. As can be seen, our results for MORB are in very good agreement
361	with the model of Fortin et al. (2015) but that of Li and Ripley (2005) predicts much
362	higher concentrations than those observed. The results of O'Neill and Mavrogenes
363	(2002) are close to ours at their experimental temperature of 1400°C, but their
364	equation does not provide for the correct form of the temperature extrapolation, as
365	noted above.
366	
367	Figures 4a, and 4b shows the calculated effects of pressure on the solubility of sulfur
368	in the silicate melt compositions of Table 4 at a fixed temperature of 1400°C. All
369	melts of concern exhibit predicted declines in [S] _{SCSS} with increasing pressure,
370	consistent with previously published results (Holzheid and Grove 2002). Figure 4b
371	shows, consistent with Figure 3, that the best agreement with previous results is with
372	the model of Fortin et al (2015).
373	
374	Effect of sulfide composition
375	
376	One of the major aims of our study was to investigate the effects of sulfide liquid
377	composition on $[S]_{SCSS}$. As can be seen from Figure 1, and Table 2 the assumption of
378	ideal FeS-NiS-CuS $_{0.5}$ solution produces very good fits to the experimental data over
379	most of the composition range investigated and implies that $[S]_{SCSS}$ declines almost

380 linearly as Fe/(Fe+Ni+Cu) declines. It is known, however, that neither FeS-NiS

381 (Fleet, 1989) nor FeS-CuS_{0.5} (Eric and Timucin 1981) melt solutions are perfectly

- 382 ideal and these deviations from ideality likely cause the deviations of [S]_{SCSS} from the
- 383 predicted values at low Fe/(Fe+Ni+Cu) (Table 2).
- 384
- 385 Nonideality in the sulfide solution can be treated in a number of different possible
- 386 ways. We could use previously measured activity coefficients from the studies
- 387 mentioned above. This would require re-fitting Equations (11) and (12) to derive new
- 388 values of the A_M parameters. Since, however, our results indicate relatively small
- deviations from FeS-NiS-CuS $_{0.5}$ ideality, we have opted to use a simple non-ideal
- 390 solution model and to treat the nonideality parameters as unknowns. In that case,
- 391 applying a ternary symmetrical solution model for $a_{\text{FeS}}^{sulfide}$ (e.g. Wood and Fraser,

...

- 392 1976) we add compositional terms as follows to that involving $X_{\text{FeS}}^{sulfide}$
- 393

$$\ln a_{\text{FeS}}^{sulfide} = \ln X_{\text{FeS}}^{sulfide} + \frac{W_{\text{NiFe}}}{RT} X_{\text{NiS}}^{2} + \frac{W_{\text{CuFe}}}{RT} X_{\text{CuS}_{0.5}}^{2} + \frac{X_{\text{NiS}} X_{\text{CuS}_{0.5}}}{RT} (W_{\text{NiFe}} + W_{\text{CuFe}} - W_{\text{NiCu}})$$
(13)

...

394

395 In Equation (12) the W_{ij} parameters are the interaction parameters for i-j pairs and are 396 obviously 0 if the solution is ideal. Treating the W_{ij}/R as fit parameters and adding 397 them to Equation (12) yields:

$$\ln[S]_{SCSS} = \frac{14695}{T} - 9.656 + 1.02 lnT + B' + \frac{CP}{T} + \sum_{M} X_{M} A_{M} / T + \ln X_{FeS}^{sulfide} + \frac{D}{T} (X_{NiS}^{2} + X_{NiS} X_{CuS_{0.5}}) + \frac{E}{T} (X_{CuS_{0.5}}^{2} + X_{NiS} X_{CuS_{0.5}}) + \frac{F}{T} (-X_{NiS} X_{CuS_{0.5}}) - \ln a_{FeO}^{silicate}$$
(14)

399

400 We fitted Equation (13) to the same 392 [S]_{SCSS} data as those used previously using, 401 once more, stepwise linear regression. This approach led to D and F parameters which 402 are not statistically significant and an E parameter of 546 K (Table 2). The latter 403 reflects Fe-Cu interactions and its inclusion leads to improvements in calculated 404 $[S]_{SCSS}$ for sulfur-rich compositions (Table 2). The overall improvement in r^2 is, 405 however, very small, increasing from 0.977 to 0.978. An important point to note is 406 that the fitted compositional $A_{\rm M}$ parameters (Table 2) are identical within uncertainty 407 to those derived by assuming ideal sulfide solution. 408 409 Figures 5a, and 5b shows the calculated [S]_{SCSS} for the MORB composition of Table 4

410 at saturation in FeS-NiS-CuS_{0.5} sulfide of the indicated composition. In the ideal 411 solution case of Figure 5a, sulfur solubility declines linearly at fixed ratio to X_{FeS} as 412 discussed above. The non-ideal case of Figure 5b shows little difference from the 413 ideal solution calculation at X_{FeS} >0.5, but differences between the two increase with 414 decreasing X_{FeS} . At present we consider that the ideal solution model of Table 3 and 415 Figure 5a is adequate for most geologic situations and certainly in those cases of 416 X_{FeS} >0.5. The important point which we wish to reiterate is that [S]_{SCSS} is extremely 417 dependent on sulfide composition and should not be treated as a constant at fixed P, T 418 and silicate composition. Supplement 2 comprises a spreadsheet for calculation of 419 [S]_{SCSS} using our regressed parameters for both ideal and non-ideal assumptions.

120	
420	

420	
421	Application to natural systems
422	
423	Based on Fe^{2+}/Fe^{3+} measurements the fO_2 of MORB has been estimated to be around
424	that of the fayalite-magnetite-quartz (FMQ) oxygen buffer (Cottrell and Kelley,
425	2013). Under these conditions sulfur will be present dominantly as S^{2-} , suggesting that
426	the Fincham - Richardson relationship should apply to MORB melts. Although
427	chemical and textural evidence (Peach et al., 1990; Patten et el., 2013) suggests that
428	MORBs are sulfide saturated throughout their crystallization histories, most previous
429	models for SCSS, imply, in contrast, that MORBs are sulfide undersaturated during
430	much of crystallization (O'Neill and Mavrogenes, 2002; Li and Ripley, 2005; Li and
431	Ripley, 2009; Fortin et al., 2015) (Fig. 6a).
432	
433	To address this apparent discrepancy, we have taken an average of primitive MORB
434	glass compositions (MgO > 9.3 wt%) from Jenner and O'Neill (2012) and determined
435	the liquid line of descent from 1230 to 1170°C using Petrolog3 (Danyushevsky and
436	Plechov, 2011). We then applied our model for SCSS assuming ideal solution in the
437	immiscible sulfide, a pressure of 0.3 GPa and a Fe/(Fe+Ni+Cu) of 0.7 common to
438	sulfides found in MORB (Patten et al. 2013; Peach et al., 1990).
439	
440	The results for SCSS along the liquid line of descent of MORB based on the model
441	presented here agree with the high sulfur contents of MORB glasses measured by
442	Jenner and O'Neill (2012) over the entire range of MgO contents. In contrast, as

443 discussed above, most previous [S]_{SCSS} expressions suggest that, over a significant

444 range of MgO concentrations MORB melts are undersaturated with respect to S

445	(O'Neill and Mavrogenes, 2002; Li and Ripley, 2005; Li and Ripley, 2009; Fortin et
446	al., 2015) as shown in Figure 6a. The two exceptions to this are the models of
447	Mavrogenes and O'Neill (1999) and Holzheid and Grove (2002) which substantially
448	underpredict the S contents of the MORB glasses. Although there is a pronounced
449	cluster of S analyses along our predicted trend at sulfide saturation (Fig. 6) we note
450	that a number of S concentrations fall below those we calculate. Lower sulfur
451	concentrations are plausibly the result of degassing of the melt during eruption (Fig.
452	6b). We therefore conclude, based on our measurements that the MORB source
453	region is sulfide saturated and the melts remain at sulfide saturation throughout their
454	crystallization histories.
455	
456	Implications and conclusions
457	
457 458	We have demonstrated that the solubility of sulfur in silicate melt at sulfide saturation
	We have demonstrated that the solubility of sulfur in silicate melt at sulfide saturation [S] _{SCSS} depends, at fixed pressure, temperature and silicate melt composition, on the
458	·
458 459	[S] _{SCSS} depends, at fixed pressure, temperature and silicate melt composition, on the
458 459 460	$[S]_{SCSS}$ depends, at fixed pressure, temperature and silicate melt composition, on the composition of the sulfide liquid. This dependence, to a good approximation, leads to
458 459 460 461	$[S]_{SCSS}$ depends, at fixed pressure, temperature and silicate melt composition, on the composition of the sulfide liquid. This dependence, to a good approximation, leads to $[S]_{SCSS}$ being a linear function of the mole fraction of FeS in the sulfide liquid,
458 459 460 461 462	[S] _{SCSS} depends, at fixed pressure, temperature and silicate melt composition, on the composition of the sulfide liquid. This dependence, to a good approximation, leads to [S] _{SCSS} being a linear function of the mole fraction of FeS in the sulfide liquid, defined as ($X_{\text{FeS}}^{sulfide} = \text{Fe}/(\text{Fe}+\text{Ni}+\text{Cu})$). Departures from linear behavior at $X_{\text{FeS}}^{sulfide}$
458 459 460 461 462 463	[S] _{SCSS} depends, at fixed pressure, temperature and silicate melt composition, on the composition of the sulfide liquid. This dependence, to a good approximation, leads to [S] _{SCSS} being a linear function of the mole fraction of FeS in the sulfide liquid, defined as $(X_{\text{FeS}}^{sulfide} = \text{Fe}/(\text{Fe}+\text{Ni}+\text{Cu}))$. Departures from linear behavior at $X_{\text{FeS}}^{sulfide}$ below ~0.5 are consistent with known non-idealities in the FeS-NiS and FeS-CuS _{0.5}
458 459 460 461 462 463 464	[S] _{SCSS} depends, at fixed pressure, temperature and silicate melt composition, on the composition of the sulfide liquid. This dependence, to a good approximation, leads to [S] _{SCSS} being a linear function of the mole fraction of FeS in the sulfide liquid, defined as $(X_{\text{FeS}}^{sulfide} = \text{Fe}/(\text{Fe}+\text{Ni}+\text{Cu}))$. Departures from linear behavior at $X_{\text{FeS}}^{sulfide}$ below ~0.5 are consistent with known non-idealities in the FeS-NiS and FeS-CuS _{0.5}
458 459 460 461 462 463 464 465	[S] _{SCSS} depends, at fixed pressure, temperature and silicate melt composition, on the composition of the sulfide liquid. This dependence, to a good approximation, leads to [S] _{SCSS} being a linear function of the mole fraction of FeS in the sulfide liquid, defined as ($X_{\text{FeS}}^{sulfide} = \text{Fe}/(\text{Fe}+\text{Ni}+\text{Cu})$). Departures from linear behavior at $X_{\text{FeS}}^{sulfide}$ below ~0.5 are consistent with known non-idealities in the FeS-NiS and FeS-CuS _{0.5} liquid systems.
458 459 460 461 462 463 464 465 466	[S] _{SCSS} depends, at fixed pressure, temperature and silicate melt composition, on the composition of the sulfide liquid. This dependence, to a good approximation, leads to [S] _{SCSS} being a linear function of the mole fraction of FeS in the sulfide liquid, defined as $(X_{FeS}^{sulfide} = Fe/(Fe+Ni+Cu))$. Departures from linear behavior at $X_{FeS}^{sulfide}$ below ~0.5 are consistent with known non-idealities in the FeS-NiS and FeS-CuS _{0.5} liquid systems. We took both ideal and non-ideal sulfide solution models and fit [S] _{SCSS} to the

$$\ln[S]_{SCSS} = \frac{\Delta G^{\circ}}{RT} + A_0 + \sum_{M} X_M A_M / T + \ln a_{FeS}^{sulfide} - \ln a_{FeO}^{silicate}$$

470

471 In this equation ΔG° is the standard state free energy change for the reaction:

472

$$\operatorname{FeO}^{silicate} + \frac{1}{2}S_2 = \operatorname{FeS}^{sulfide} + \frac{1}{2}O_2$$

473

The expression for $[S]_{SCSS}$ incorporates compositional parameters A_M in terms dependent on X_M the mole fraction of the oxide of M in the silicate melt on a single cation basis. The activities $a_{FeO}^{solicate}$ and $a_{FeS}^{sulfide}$ were assumed equal to the mole fractions of FeO in the silicate and FeS in the sulfide respectively except where the latter was treated as a (nonideal) ternary symmetrical solution.

479

480 We fitted [S]_{SCSS} to the 392 available data points in order to derive best-fit values of 481 A_0 and the $A_{\rm M}$ together with the pressure-dependence of ΔG° . The standard free energy 482 change ΔG° was adopted from O'Neill and Mavrogenes (2002). Since [S]_{SCSS} is 483 observed to have a positive dependence on temperature while ΔG° decreases with 484 increasing temperature, the $A_{\rm M}$ parameters are required to be mostly negative. We 485 tested this conclusion by treating ΔG° and its temperature dependence ΔS° as 486 unknowns and fitted Equation (11), which has these extra unknowns, to the data. As 487 before, the best-fit ΔG° has a negative temperature-dependence and the fit parameters 488 are all negative except for a cross-term A_{SiFe} which takes account of a positive 489 correlations between $[S]_{SCSS}$ and the product $X_{Si}X_{Fe}$. 490

- 491 We find that the cross-term A_{SiFe} is extremely robust in that it has, within uncertainty,
- 492 the same value (~113000K) in all 3 cases considered (a) ΔG° treated as a *P*-*T*
- 493 dependent fit parameter, with ideal FeS-NiS-CuS_{0.5} sulfide solution (b) ΔG° at 1 bar
- 494 adopted from thermodynamic data and assuming ideal FeS-NiS-CuS_{0.5} sulfide
- 495 solution and (c) ΔG° at 1 bar adopted from thermodynamic data and assuming
- 496 nonideal FeS-NiS-CuS $_{0.5}$ sulfide solution.
- 497
- 498 The large positive term in $X_{Si}X_{Fe}$ (on a single cation basis) means that $[S]_{SCSS}$ is
- 499 predominantly dependent on the FeO content of the silicate melt decreasing (for FeS
- saturation at 1 GPa, 1400°C) from 4692 ppm for a Martian basalt with 17.9 wt% FeO
- 501 to 1084 ppm for Andesite with 7.7 wt% FeO.
- 502
- 503 In agreement with previous versions of the effects of pressure and temperature on
- 504 [S]_{SCSS}, all natural silicate melt compositions considered exhibit positive dependences
- 505 on temperature and negative dependences of [S]_{SCSS} on pressure. Our results are,
- 506 however, in best agreement with those of Fortin et al (2015).
- 507
- 508 Finally, application of our results to the MORB glasses analysed by Jenner and
- 509 O'Neill (2012) indicates that MORB are sulfide saturated throughout their
- 510 crystallisation paths.
- 511
- 512 Acknowledgements
- 513
- 514 We would like to thank Roman Botcharnikov and John Mavrogenes for their
- 515 thoughtful reviews and Don Baker for editorial handling. This work was funded by

- 516 European Research Council grant 267764 to BJW and by NERC grant NE/L010828/1
- 517 to ESK.
- 518

519	References
520	Ariskin A.A., Danyushevsky L.V., Bychkov K.A. McNeill, A.W. Barmina, G.S., and
521	Nikolaev, G.S. (2013) Modeling Solubility of Fe-Ni Sulfides in Basaltic
522	Magmas: The Effect of Nickel. Economic Geology 108, 1983-2003.
523	
524	Bridges J.C. and Warren P.H. (2006) The SNC meteorites: basaltic igneous processes
525	on Mars. Journal of the Geological Society 163, 229-251.
526	
527	Cottrell E., and Kelley K.A. (2013) Redox heterogeneity in mid-ocean ridge basalts as
528	a function of mantle source. Science 340, 1314-7.
529	
530	Danyushevsky L.V., and Plechov P. (2011) Petrolog3: Integrated software for
531	modeling crystallization processes. Geochemistry, Geophysics, Geosystems 12.
532	
533	Eric H., and Timucin M. (1981) Activities in Cu_2S -FeS-PbS Melts at 1200°C.
534	Metallurgical Transactions B 12, 493-500.
535	
536	Fincham C.J.B., and Richardson F.D. (1954) The Behaviour of Sulphur in Silicate
537	and Aluminate Melts. Proceedings of the Royal Society A: Mathematical,
538	Physical and Engineering Sciences 223, 40–62.
539	
540	Fischer T.P., Giggenbach W.F., Sano Y., and Williams S.N. (1998) Fluxes and

541	sources of volatiles discharged from kudryavy, a subduction zone volcano,
542	Kurile Islands. Earth and Planetary Science Letters 160, 81-86.
543	
544	Fleet M.E. (1989) Activity coefficients for FeS and NiS in monosulfide liquid and
545	$NiSi_{1/2}O_2$ in olivine from sulfide-silicate equilibria. Geochimica et
546	Cosmochimica Acta 53, 791–796.
547	
548	Fortin MA., Riddle J., Desjardins-Langlais Y., and Baker D.R. (2015) The effect of
549	water on the sulfur concentration at sulfide saturation (SCSS) in natural melts.
550	Geochimica et Cosmochimica Acta 160, 100–116.
551	
552	Francis R.D. (1990) Sulfide globules in mid-ocean ridge basalts (MORB), and the
553	effect of oxygen abundance in Fe-S-O liquids on the ability of those liquids to
554	partition metals from MORB and komatiite magmas. Chemical Geology 85,
555	199–213.
556	
557	Gale A., Dalton C.A., Langmuir C.H., Su Y., and Schilling J.G. (2013) The mean
558	composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems 14,
559	489–518.
560	
561	Haughton D.R., Roeder P.L., and Skinner B.J. (1974) Solubility of sulfur in mafic
562	magmas. Economic Geology 69, 451–467.
563	
564	Holzheid A., and Grove T.L. (2002) Sulfur saturation limits in silicate melts and their
565	implications for core formation scenarios for terrestrial planets. American

566	Mineralogist 87, 227–237.
567	
568	Jenner F.E., and O'Neill H.S.C. (2012) Analysis of 60 elements in 616 ocean floor
569	basaltic glasses. Geochemistry, Geophysics, Geosystems 13, 1-11.
570	
571	Katsura T., and Nagashima S. (1974) Solubility of sulfur in some magmas at 1
572	atmosphere. Geochimica et Cosmochimica Acta 38, 517-531.
573	
574	Kiseeva E.S., and Wood B.J. (2013) A simple model for chalcophile element
575	partitioning between sulphide and silicate liquids with geochemical applications.
576	Earth and Planetary Science Letters 383, 68-81.
577	
578	Kiseeva E.S., and Wood B.J. (2015) The effects of composition and temperature on
579	chalcophile and lithophile element partitioning into magmatic sulphides. Earth
580	and Planetary Science Letters 424, 280–294.
581	
582	Li C., and Ripley E.M. (2005) Empirical equations to predict the sulfur content of
583	mafic magmas at sulfide saturation and applications to magmatic sulfide
584	deposits. Mineralium Deposita 40, 218–230.
585	
586	Li C., and Ripley E.M. (2009) Sulfur contents at sulfide-liquid or anhydrite saturation
587	in silicate melts: Empirical equations and example applications. Economic
588	Geology 104, 405–412.
589	
590	Liu Y., Samaha NT., and Baker D.R. (2007) Sulfur concentration at sulfide

591	saturation (SCSS) in magmatic silicate melts. Geochimica et Cosmochimica
592	Acta 71, 1783–1799.
593	
594	Mavrogenes J.A., and O'Neill H.S.C. (1999) The relative effects of pressure,
595	temperature and oxygen fugacity on the solubility of sulfide in mafic magmas.
596	Geochimica et Cosmochimica Acta 63, 1173–1180.
597	
598	Mungall J.E. (2007) Magmatic ore deposits. In Treatise on Geochemistry Elsevier
599	Ltd. pp. 1–33.
600	
601	O'Neill H.S.C., and Mavrogenes J.A. (2002) The Sulfide Capacity and the Sulfur
602	Content at Sulfide Saturation of Silicate Melts at 1400°C and 1 bar. Journal of
603	Petrology 43, 1049–1087.
604	
605	Parman S.W., Shimizu N., Grove T.L. and Dann J.C. (2003) Constraints on the pre-
606	metamorphic trace element composition of Barberton komatiites from ion probe
607	analyses of preserved clinopyroxene. Contributions to Mineralogy and Petrology
608	144, 383–396.
609	
610	Patten C., Barnes S.J., Mathez E.A., and Jenner F.E. (2013) Partition coefficients of
611	chalcophile elements between sulfide and silicate melts and the early
612	crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide
613	droplets. Chemical Geology 358, 170–188.
614	
615	Peach C.L., Mathez E.A., and Keays R.R. (1990) Sulfide melt-silicate melt

616	distribution coefficients for noble metals and other chalcophile elements as
617	deduced from MORB: Implications for partial melting. Geochimica et
618	Cosmochimica Acta 54, 3379–3389.
619	
620	Presnall D.C., Dixon S.A., Dixon J.R., O'Donnell T.H., Brenner N.L., Schrock R.L.,
621	and Dycus D.W. (1978) Liquidus phase relations on the join diopside-forsterite-
622	anorthite from 1 atm to 20 kbar: Their bearing on the generation and
623	crystallization of basaltic magma. Contributions to Mineralogy and Petrology 66,
624	203–220.
625	
626	Shima H., and Naldrett A.J. (1975) Solubility of sulfur in an ultramafic melt and the
627	relevance of the system Fe-S-O. Economic Geology 70, 960–967.
628	
629	Tuff J., Wood B.J., and Wade J. (2011) The effect of Si on metal-silicate
630	partitioning of siderophile elements and implications for the conditions of
631	core formation. Geochimica et Cosmochimica Acta 75, 673-690.
632	
633	Wallace P.J. (2005) Volatiles in subduction zone magmas: Concentrations and fluxes
634	based on melt inclusion and volcanic gas data. Journal of Volcanology and
635	Geothermal Research 140, 217–240.
636	
637	Wallace P.J., and Carmichael I.S.E. (1992) Sulfur in basaltic magmas. Geochimica et
638	Cosmochimica Acta 56, 1863-1874.
639	
640	Wilkinson J.F.G. (1986) Classification and average chemical compositions of

641	common basalts and andesites. Journal of Petrology 27, 31-62.
642	
643	Wood B.J., and Fraser D.G. (1976) Elementary Thermodynamics for Geologists.
644	Oxford University Press, Oxford, U.K.
645	
646	Wood B.J., Kiseeva E.S., and Mirolo F.J. (2014) Accretion and core formation: the
647	effects of sulfur on metal-silicate partition coefficients. Geochimica et
648	Cosmochimica Acta 145, 248–267.
649	
650	Wood B.J., and Kiseeva E.S. (2015) Trace element partitioning into sulfide: How
651	lithophile elements become chalcophile and vice versa. American Mineralogist
652	100, 2371-2379.
653	
654	Wood B.J., and Wade J. (2013) Activities and volatilities of trace components in
655	silicate melts: A novel use of metal-silicate partitioning data. Contributions to
656	Mineralogy and Petrology 166, 911–921.
657	
658	Figure captions
659	
660	Figure 1. Observed values of SCSS vs. calculated using coefficients for the ideal
661	sulfide melt solution model (Table 3) for 398 synthetic silicate melts equilibrated
662	with immiscible sulfide melt (Table S1). Red diamonds represent experiments
663	done at highly reducing conditions which were not included in the regression
664	(see text).
665	

666	Figure 2. Compositional dependence of SCSS at 1 GPa assuming an immiscible
667	sulfide liquid of pure FeS for (a) four different melt compositions with varying
668	FeO concentrations using the model presented in this study and (b) for MORB
669	comparing predicted SCSS from the present study to those from previous
670	investigations (Holzheid and Grove, 2002; Li and Ripley, 2005; Fortin et al.,
671	2015).
672	
673	
674	Figure 3. Temperature dependence of SCSS at 1 GPa assuming an immiscible sulfide
675	liquid of pure FeS for (a) different melt compositions using the model presented
676	in this study and (b) for MORB comparing predicted SCSS from the present
677	study to those from previous investigations (Mavrogenes and O'Neill, 1999;
678	Holzheid and Grove, 2002; Li and Ripley, 2005; Fortin et al., 2015).
679	
680	Figure 4. Pressure dependence of SCSS at 1400°C assuming an immiscible sulfide
681	liquid of pure FeS for (a) different melt compositions using the model presented
682	in this study and (b) for MORB comparing predicted SCSS from the present
683	study to those from previous investigations (Holzheid and Grove, 2002; Li and
684	Ripley, 2005; Fortin et al., 2015).
685	
686	Figure 5. Ternary plots showing predicted SCSS in average MORB at 1400°C and 1
687	GPa assuming (a) ideal, and (b) nonideal solution models for sulfide melt.
688	Numbers represent the S concentration in the silicate melt in ppm, orange
689	squares are the sulfide melt compositions presented in this study and grey
690	diamonds are those of previous investigations (Table S1).

692	Figure 6. (a) Sulfur contents of MORB glasses as a function of wt% MgO measured
693	by Jenner and O'Neill (2012) compared to predicted values of SCSS from this
694	and previous studies along the MORB liquid line of descent (Mavrogenes and
695	O'Neill, 1999; Holzheid and Grove, 2002; O'Neill and Mavrogenes, 2002; Li
696	and Ripley, 2005; Li and Ripley, 2009; Fortin et al., 2015). (b) Comparison of
697	sulfur contents of MORB glasses to values of SCSS predicted by this study and
698	the expected effects of magma degassing.

699

Table 1. Experimental run conditions

Sample	Starting composition	Temperature	Pressure	Capsule	Duration
bumpie	Starting composition	(°C)	(GPa)	cupsulo	(min)
Ni2-1	$An_{50}Di_{28}Fo_{22} + 5\% FeO + 25\% FeS + 25\% NiS$	1400	1.5	Graphite	120
Cu6-2	$Basalt+6\% FeO+42\% FeS+8\% Cu_2S$	1400	1.5	SiO_2	120
Ni2-2	$An_{50}Di_{28}Fo_{22} + 5\% FeO + 25\% FeS + 25\% NiS$	1400	1.5	SiO_2	90
Ni3-2	$An_{50}Di_{28}Fo_{22} + 5\%FeO + 25\%FeS + 25\%Ni_{3}S_{2}$	1400	1.5	SiO_2	120
Ni4-1	$An_{50}Di_{28}Fo_{22} + 5\%FeO + 10\%FeS + 20\%Ni_{3}S_{2} + 20\%Cu_{2}S$	1400	1.5	SiO_2	120
Ni5-1	Basalt + 25% Ni ₃ S ₂ + 25% Cu ₂ S	1400	1.5	SiO_2	135
F1-1	$An_{42}Di_{58} + 10\%$ FeO + 50% FeS	1650	1.5	Graphite	40
F2-1	$An_{28}Di_{39}Qz_{33} + 10\%$ FeO + 50%FeS	1650	1.5	Graphite	30
F3-1	$An_{17}Di_{23}Wo_{60} + 10\% FeO + 50\% FeS$	1650	1.5	Graphite	30
F4-1	$Wo_{67}Qz_{33}$ + 10% FeO + 50% FeS	1650	1.5	Graphite	30
F5-1	$An_{50}Di_{28}Fo_{22} + 10\%FeO + 50\%FeS$	1650	1.5	Graphite	30
F6-1	$An_{41}Di_{23}Fo_{41}Per_{18} + 10\%FeO + 50\%FeS$	1650	1.5	Graphite	30
F7-1	$An_{35}Di_{19}Fo_{15}Qz_{31} + 10\%FeO + 50\%FeS$	1650	1.5	Graphite	35
F8-1	$Fo_{61}Qz_{39} + 10\% FeO + 50\% FeS$	1650	1.5	Graphite	30
F9-1	$An_{95}Cor_5 + 10\% FeO + 50\% FeS$	1650	1.5	Graphite	40
F10-1	$Fo_{50}And_{19}Qz_{31} + 10\%FeO + 50\%FeS$	1650	1.5	Graphite	30
F11-1	$An_{81}Per_{15}And_4 + 10\%FeO + 50\%FeS$	1650	1.5	Graphite	30
KK9-3	$An_{50}Di_{28}Fo_{22} + 10\%FeO + 45\%FeS + 5\%NiS$	1400	1.5	Pt-Graphite	180
KK10-2	Haplobasalt + 10% FeO + 48% FeS + 2% NiS	1400	1.5	Pt-Graphite	60
KK10-5	Haplobasalt + 10%FeO + 48%FeS +2%NiS	1400	1.5	Graphite	1080
KK14-1	Basalt + 6% FeO + 49.5% FeS + 0.5% NiS	1400	1.5	Pt-Graphite	120
KK14-2	Basalt + 6%FeO + 49.5%FeS + 0.5%NiS	1400	1.5	Pt-Graphite	90
KK25-1	Andesite + 48% FeS +2% NiS	1400	1.5	Graphite	120
KK26-1	Dacite + 48%FeS +2%NiS	1400	1.5	Graphite	165
KK30-1	$BCR-2 + 15\% Ab_{33}Or_{50}Fo_{17} + 49\% FeS + 1\% NiS$	1400	1.5	Graphite	135
KK31-1	Phonolite $+48\%$ FeS $+1\%$ NiS $+1\%$ Cu ₂ S	1400	1.5	Graphite	120
KK32-1	$Ab_{79}Fo_{21} + 2.5\%FeO + 45\%FeS + 2.5\%NiS + 2.5\%Cu_2S$	1400	1.5	Graphite	135
KK37-1	Diabase + 45% FeS + 2.5% NiS + 2.5% Cu_2S	1635	1.5	Graphite	30
A717	$An_{50}Di_{28}Fo_{22} + 50\% FeS$	1800	2.5	Graphite	20
A716	$An_{50}Di_{28}Fo_{22} + 10\% FeO + 50\% FeS$	1800	2.5	Graphite	20
A718	$An_{50}Di_{28}Fo_{22} + 20\%FeO + 50\%FeS$	1800	2.5	Graphite	20
B283	$An_{50}Di_{28}Fo_{22} + 50\% Cu_2S$	1525	1.5	Pt-Graphite	140
B284	$An_{50}Di_{28}Fo_{22} + 50\% NiS$	1525	1.5	Pt-Graphite	60
B285	$An_{50}Di_{28}Fo_{22} + 50\% FeS$	1800	1.5	Graphite	20
B286	$An_{50}Di_{28}Fo_{22} + 10\%FeO + 50\%FeS$	1800	1.5	Graphite	20
B287	$An_{50}Di_{28}Fo_{22} + 20\%FeO + 50\%FeS$	1800	1.5	Graphite	30
C138	Basalt + 50% FeO + 50% FeS	1800	5.5	Graphite	15
C140	$An_{50}Di_{28}Fo_{22} + 50\% FeS$	1800	5.5	Graphite	10
C141	$An_{50}Di_{28}Fo_{22} + 50\% FeS$	1800	5.5	Graphite	10
C142	$An_{50}Di_{28}Fo_{22} + 10\%FeO + 50\%FeS$	1800	5.5	Graphite	10
C143	$An_{50}Di_{28}Fo_{22} + 20\% FeO + 50\% FeS$	1800	5.5	Graphite	10
B291	$An_{50}Di_{28}Fo_{22} + 10\% FeO + 50\% NiS$	1500	1.5	Graphite	60
B292	$An_{50}Di_{28}Po_{22} + 10\% PeO + 50\% Cu_2S$	1500	1.5	Graphite	60
B293	$An_{50}Di_{28}Po_{22} + 10\% FeO + 25\% NiS + 25\% Cu_2S$	1500	1.5	Graphite	60
735	$Di_{61}An_{10}Qz_{29} + 25\% FeO + 50\% FeS$	1800	7	Graphite	10
753	$Peridotite + 5\% SiO_2 + 50\% FeS$	2160	24	MgO	10
1605	$An_{50}Di_{28}Fo_{22} + 15\%FeO + 33\%FeS + 33\%NiS + 33\%Cu_2S$	1600	1.5	Graphite	20
1606	$An_{50}Di_{28}Fo_{22} + 10\%FeO + 33\%FeS + 33\%NiS + 33\%Cu_2S$ $An_{50}Di_{28}Fo_{22} + 10\%FeO + 33\%FeS + 33\%NiS + 33\%Cu_2S$	1600	1.5	Graphite	20
1607	$An_{50}Di_{28}Fo_{22} + 10\%FeO + 33\%FeS + 33\%NiS + 33\%Cu_2S$ $An_{50}Di_{28}Fo_{22} + 20\%FeO + 33\%FeS + 33\%NiS + 33\%Cu_2S$	1600	1.5	Graphite	20
	- Di - dionside Eq forserite Oz - quartz Wo - wollastonite Pe			-	

An - anorthite, Di - diopside, Fo - forserite, Qz - quartz, Wo - wollastonite, Per - periclase, Cor - corundum, And - andalusite, BCR-2 - USGS Columbia River Basalt

Table 2. Co	ompositions of silic	ate glass and sulfi	de in wt% measur	ed by EPMA						
Sample	Ni2-1	Cu6-2	Ni2-2	Ni3-2	Ni4-1	Ni5-1	F1-1	F2-1	F3-1	F4-1
SiO ₂	44.23 (0.06)	54.83 (0.55)	57.16 (0.19)	58.62 (0.27)	55.86 (0.17)	62.91 (0.51)	43.31 (0.39)	54.44 (0.23)	43.93 (0.32)	55.51 (0.94)
TiO ₂	0.01 (0.01)	0.40 (0.01)				0.64 (0.03)				
Al_2O_3	17.71 (0.06)	7.78 (0.17)	12.05 (0.14)	11.27 (0.58)	9.52 (0.09)	12.25 (0.10)	13.56 (0.11)	13.22 (0.09)	5.44 (0.06)	0.14 (0.02)
FeO	0.88 (0.03)	5.07 (0.12)	5.56 (0.09)	4.58 (0.16)	4.13 (0.06)	2.74 (0.05)	10.76 (0.55)	12.85 (0.17)	10.38 (0.46)	13.25 (0.68)
MgO	17.70 (0.13)	12.93 (0.38)	10.55 (0.09)	11.62 (0.26)	10.77 (0.06)	8.63 (0.15)	9.33 (0.07)	4.58 (0.03)	4.07 (0.04)	0.13 (0.02)
CaO	16.44 (0.09)	15.33 (0.09)	12.11 (0.09)	11.99 (0.17)	15.98 (0.07)	10.38 (0.13)	20.12 (0.18)	13.07 (0.08)	32.67 (0.25)	27.05 (0.47)
MnO	0.01 (0.01)	0.07 (0.01)	0.02 (0.02)	0.04 (0.01)	0.01 (0.01)	0.16 (0.01)				
Na ₂ O	0.35 (0.01)	0.33 (0.02)				1.30 (0.03)				
K ₂ O	0.01 (0.01)	0.11 (0.01)				0.12 (0.01)				
P_2O_5		0.14 (0.01)				0.04 (0.01)				
S (ppm)	4970 (90)	1443 (436)	2179 (86)	618 (57)	325 (45)	159 (62)	5789 (2755)	4921 (1033)	7993 (2252)	8411 (3420)
Total	97.83	97.00	97.67	98.17	96.31	99.14	97.66	98.65	97.29	96.93
Fe	44.91 (0.39)	52.04 (7.43)	42.98 (1.38)	31.39 (6.67)	13.40 (6.75)	5.69 (0.51)	59.37 (0.69)	59.03 (1.47)	59.91 (0.85)	59.04 (0.72)
Ni	14.98 (0.17)	0.36 (0.09)	15.90 (0.97)	35.26 (8.72)	34.00 (19.97)	28.20 (7.53)	0.62 (0.08)	1.11 (0.33)	0.89 (0.38)	0.79 (0.04)
Cu	0.31 (0.05)	11.07 (8.42)	0.23 (0.10)	0.73 (0.40)	24.28 (26.8)	29.53 (8.18)	1.01 (0.20)	1.30 (0.18)	0.61 (0.11)	1.10 (0.15)
S	37.46 (0.57)	33.31 (2.23)	33.41 (0.92)	31.72 (2.62)	35.97 (3.60)	36.49 (0.86)	36.60 (0.85)	34.73 (2.38)	32.74 (1.81)	37.52 (0.64)
0	0.09 (0.07)	0.56 (0.45)	0.22 (0.09)	0.42 (0.21)	0.26 (0.21)	n.d.	1.48 (0.65)	2.66 (1.64)	2.11 (1.21)	1.32 (0.45)
Total	97.75	97.34	92.75	99.53	107.91	99.90	99.08	98.83	96.27	99.76
S (calc.) ^a	7031 (1921)	1481 (405)	904 (247)	569 (155)	320 (87)	80 (22)	4267 (1166)	3444 (941)	7978 (2179)	9298 (2540)
S (calc.) ^b	6545 (1749)	1423 (380)	870 (232)	547 (146)	329 (88)	90 (24)	4181 (1118)	3499 (935)	7578 (2026)	9164 (2449)
Sample	F5-1	F6-1	F7-1	F8-1	F9-1	F10-1	F11-1	KK9-3	KK10-2	KK10-5
SiO ₂	41.08 (0.23)	34.72 (0.80)	52.69 (0.18)	54.40 (0.39)	37.39 (0.15)	50.27 (0.43)	36.10 (0.29)	41.46 (0.10)	52.03 (0.16)	52.19 (0.62)
TiO ₂										0.02 (0.01)
Al_2O_3	16.63 (0.10)	13.82 (1.17)	10.49 (0.06)	0.21 (0.03)	34.04 (0.10)	10.65 (0.10)	25.55 (0.32)	16.47 (0.06)	15.60 (0.02)	15.33 (0.18)
FeO	9.13 (0.34)	8.70 (0.43)	13.56 (0.22)	14.23 (0.48)	11.60 (0.19)	12.67 (0.30)	9.74 (0.22)	7.19 (0.08)	9.17 (0.09)	10.05 (0.13)
MgO	15.37 (0.07)	26.87 (2.29)	10.25 (0.07)	29.21 (0.77)	0.21 (0.02)	23.97 (0.15)	11.65 (0.15)	14.98 (0.05)	8.98 (0.07)	8.92 (0.07)
CaO	15.29 (0.17)	14.26 (1.67)	10.13 (0.07)	0.42 (0.06)	16.64 (0.09)	0.35 (0.01)	15.83 (0.16)	15.12 (0.08)	10.60 (0.08)	10.97 (0.08)
MnO										0.05 (0.01)
Na ₂ O										0.07 (0.01)
K_2O										
P_2O_5										
S (ppm)	4563 (1372)	4845 (1827)	4358 (1027)	4249 (990)	2942 (529)	4041 (1292)	3806 (838)	2402 (114)	2165 (129)	1644 (95)
Total	97.96	98.86	97.56	98.90	100.18	98.32	99.26	95.46	96.59	97.77
Fe	59.78 (0.80)	59.59 (0.92)	58.59 (0.98)	58.39 (0.99)	59.22 (1.24)	56.89 (0.86)	60.08 (0.76)	57.71 (0.64)	61.41 (0.44)	61.41 (0.59)
Ni	0.28 (0.03)	1.10 (0.32)	1.61 (0.36)	1.07 (0.16)	2.22 (0.51)	1.72 (0.12)	0.72 (0.16)	2.93 (0.06)	0.92 (0.11)	1.56 (0.05)
Cu	1.12 (0.19)	0.93 (0.18)	1.11 (0.23)	1.15 (0.23)	0.93 (0.21)	1.30 (0.29)	0.75 (0.11)	n.d	n.d	n.d
S	35.90 (0.71)	36.47 (1.78)	37.75 (0.89)	37.20 (1.01)	35.77 (1.51)	37.12 (0.91)	37.36 (1.33)	35.68 (0.42)	37.84 (0.16)	36.29 (0.55)
0	1.62 (0.56)	2.61 (1.07)	1.56 (0.65)	2.03 (0.83)	1.95 (0.95)	1.53 (0.71)	2.66 (1.03)	1.52 (0.31)	1.38 (0.11)	2.02 (0.44)
Total	98.70	100.70	100.63	99.85	100.10	98.56	101.57	97.84	101.55	101.27
S (calc.) ^a	3593 (982)	4762 (1301)	3525 (963)	3309 (904)	2430 (664)	2354 (643)	3285 (897)	2326 (635)	1495 (408)	1630 (445)
S (calc.) ^b	3542 (947)	4672 (1249)	3603 (963)	3454 (923)	2386 (638)	2439 (652)	3219 (861)	2193 (586)	1452 (388)	1585 (424)

Table 2. Compositions of silicate glass and sulfide in wt% measured by EPMA

700

(continued on next page)

Sample	KK14-1	KK14-2	KK25-1	KK26-1	KK30-1	KK31-1	KK32-1	KK37-1	A717	A716
SiO ₂	47.52 (0.17)	48.23 (0.31)	60.64 (0.29)	56.28 (1.66)	54.45 (0.87)	52.84 (0.21)	57.32 (0.23)	49.50 (0.18)	47.09 (0.18)	44.70 (0.22)
TiO ₂	0.78 (0.02)		0.56 (0.02)	0.34 (0.02)	1.39 (0.06)	1.48 (0.03)	0.02 (0.01)	0.87 (0.02)	0.01 (0.01)	0.03 (0.01)
Al_2O_3	14.89 (0.08)	15.00 (0.17)	16.75 (0.07)	15.76 (0.39)	13.96 (0.59)	18.80 (0.10)	14.39 (0.08)	9.39 (0.09)	9.97 (0.06)	10.08 (0.07)
FeO	9.06 (0.12)	8.28 (0.32)	5.47 (0.08)	5.16 (0.40)	7.10 (0.14)	4.43 (0.06)	7.05 (0.05)	11.23 (0.25)	3.12 (0.34)	7.59 (0.08)
MgO	9.99 (0.06)	10.06 (0.13)	3.15 (0.13)	3.34 (0.44)	5.39 (0.33)	3.70 (0.08)	10.36 (0.09)	16.94 (0.11)	21.34 (0.09)	20.04 (0.09)
CaO	11.89 (0.05)	11.99 (0.10)	5.98 (0.05)	11.35 (1.09)	6.74 (0.38)	4.42 (0.06)	0.66 (0.03)	7.80 (0.05)	18.17 (0.26)	16.81 (0.11)
MnO	0.13 (0.02)		0.09 (0.01)	0.07 (0.02)	0.10 (0.02)	0.03 (0.02)	0.04 (0.01)	0.04 (0.02)	0	
Na ₂ O	1.76 (0.02)	1.80 (0.03)	3.74 (0.05)	2.62 (0.06)	3.31 (0.06)	7.96 (0.15)	7.58 (0.08)	1.22 (0.09)	0.05 (0.01)	0.04 (0.02)
K ₂ O			1.14 (0.02)	2.50 (0.24)	3.20 (0.08)	3.29 (0.05)	0.03 (0.01)	0.74 (0.03)		
P_2O_5		0015	005	n.d	0.09 (0.01)	n.d	n.d	0.02 (0.01)		00.55
S (ppm)	2348 (108)	2343 (118)	885 (79)	1210 (244)	744 (106)	712 (41)	644 (41)	2732 (579)	5696 (1388)	3358 (391)
Total	96.25	95.60	97.62	97.54	95.72	97.01	97.52	98.00	100.33	99.63
Fe	60.79 (0.91)	60.76 (0.72)	56.96 (0.64)	61.92 (0.41)	59.79 (0.56)	58.49 (1.33)	57.83 (0.81)	57.98 (1.85)	64.66 (0.30)	63.74 (0.22)
Ni	0.34 (0.03)	0.26 (0.03)	1.34 (0.06)	0.23 (0.05)	0.80 (0.04)	1.20 (0.06)	2.18 (0.04)	1.46 (0.13)	0.06 (0.03)	0.05 (0.02)
Cu	n.d	n.d	1.28 (0.13)	0.15 (0.03)	0.89 (0.09)	0.86 (0.14)	1.22 (0.19)	3.66 (1.84)	0.08 (0.04)	0.11 (0.02)
S	36.32 (0.71)	36.04 (0.69)	35.02 (0.70)	36.95 (0.60)	37.08 (0.75)	38.19 (0.91)	35.57 (0.52)	36.38 (1.59)	34.27 (0.58)	35.54 (0.45)
0	1.92 (0.53)	2.05 (0.22)	1.70 (0.69)	0.63 (0.35)	2.14 (0.76)	2.66 (0.73)	2.11 (0.38)	2.33 (1.5)	1.67 (0.55)	0.42 (0.26)
Total	99.37	99.11	96.29	99.87	100.70	101.40	98.92	101.81	100.73	99.86
S (calc.) ^a	1918 (524)	1779 (486)	639 (175)	864 (236)	800 (219)	819 (224)	912 (249)	2623 (717)	7127 (1947)	4639 (1267)
S (calc.) ^b	1855 (496)	1712 (458)	636 (170)	849 (227)	809 (216)	826 (221)	912 (244)	2686 (718)	7105 (1899)	4663 (1246)
Sample	A718	B283	B284	B285	B286	B287	C138	C140	C141	C142
SiO ₂	43.49 (0.27)	47.51 (0.26)	47.60 (0.14)	47.50 (0.64)	45.33 (0.26)	43.58 (0.27)	49.72 (0.11)	47.30 (0.22)	47.18 (0.42)	43.70 (0.14)
TiO ₂	0.01 (0.01)	0.02 (0.01)	0.02 (0.01)	0.05 (0.01)	0.03 (0.01)	0.03 (0.01)	0.77 (0.05)	0.03 (0.01)	0.01 (0.01)	0.03 (0.01)
Al_2O_3	9.42 (0.06)	17.03 (0.15)	16.44 (0.04)	10.05 (0.03)	9.41 (0.07)	8.99 (0.11)	13.40 (0.10)	9.60 (0.17)	10.15 (0.13)	9.59 (0.07)
FeO	10.07 (0.42)	0.01 (0.01)	0.00 (0.01)	3.27 (0.26)	7.24 (0.26)	10.45 (0.25)	7.51 (0.16)	3.37 (0.09)	2.11 (0.22)	8.46 (0.11)
MgO	19.61 (0.22)	12.89 (0.05)	13.32 (0.05)	21.33 (0.04)	20.39 (0.09)	19.78 (0.08)	11.16 (0.11)	19.97 (0.24)	21.99 (0.40)	20.33 (0.07)
CaO MnO	16.76 (0.14)	20.28 (0.18)	20.56 (0.17)	17.65 (0.1)	17.20 (0.27)	16.40 (0.11)	12.63 (0.12)	18.15 (0.18)	17.76 (0.28)	16.36 (0.09)
MnO Na ₂ O	0.05 (0.02)	0.09 (0.02)	0.05 (0.01)	0.08 (0.02)	0.08 (0.02)	0.08 (0.02)	2.07 (0.04)	0.03 (0.02)	0.03 (0.02)	0.04 (0.01)
Na ₂ O K ₂ O	0.03 (0.02)	0.09 (0.02)	0.00 (0.01)	0.00 (0.02)	0.00 (0.02)	0.00 (0.02)	2.07 (0.04)	0.03 (0.02)	0.03 (0.02)	0.04 (0.01)
R_2O P_2O_5										
P_2O_5 S (ppm)	3801 (1346)	2003 (238)	894 (92)	7037 (983)	4944 (1143)	4734 (1390)	2113 (225)	4409 (208)	8793 (837)	4201 (408)
Total	99.80	98.03	98.08	100.62	100.19	99.78	97.48	98.89	100.11	98.92
Fe	64.73 (0.56)	0.07 (0.02)	0.05 (0.03)	63.12 (0.53)	64.54 (0.55)	64.63 (0.28)	62.29 (0.28)	62.68 (0.37)	62.91 (0.19)	64.71 (0.68)
Ni	0.03 (0.02)	0.08 (0.04)	70.19 (0.64)	0.06 (0.02)	0.06 (0.02)	0.04 (0.01)	0.36 (0.02)	0.03 (0.02)	0.03 (0.02)	0.06 (0.03)
Cu	0.08 (0.02)	74.04 (0.39)	0.05 (0.02)	0.10 (0.02)	0.11 (0.04)	0.11 (0.03)	0.30 (0.02)	0.14 (0.03)	0.11 (0.03)	0.16 (0.03)
S	34.17 (0.57)	21.94 (0.14)	27.53 (0.54)	35.57 (0.55)	34.39 (0.58)	33.77 (0.78)	35.33 (0.21)	36.09 (0.20)	36.02 (0.16)	33.28 (0.48)
0	1.87 (0.46)	n.d.	n.d.	0.68 (0.22)	1.45 (0.27)	2.05 (0.76)	0.56 (0.17)	0.25 (0.09)	n.d.	1.24 (0.17)
Total	100.88	96.13	97.82	99.54	100.55	100.60	98.84	99.19	99.06	99.45
	4609 (1259)	1866 (510)	2334 (638)	7601 (2076)	5431 (1484)	5225 (1427)	2117 (578)	4355 (1190)	6291 (1719)	3112 (850)
S (calc.) ^a	4007 11/.191	1000	200 -	1001 12	U 101 11			4555 111/0	0291 11713	5112 10.00
S (calc.) ^a S (calc.) ^b	4646 (1242)	2389 (639)	2298 (614)	7574 (2024)	5442 (1455)	5264 (1407)	2180 (583)	4372 (1169)	6308 (1686)	3154 (843)

(continued on next page)

Sample	C143	B291	B292	B293	0735	753	1605	1606	1607
SiO ₂	42.84 (0.25)	47.88 (0.35)	45.08 (0.20)	47.76 (0.25)	45.77 (0.83)	51.94 (1.77)	40.74 (0.15)	42.75 (0.31)	34.36 (0.48)
TiO_2	0.02 (0.01)	0.02 (0.01)	0.01 (0.01)	0.03 (0.01)	0.02 (0.01)	0.21 (0.02)			
Al_2O_3	9.08 (0.13)	10.08 (0.06)	9.95 (0.06)	10.83 (0.12)	3.63 (0.07)	4.11 (0.53)	14.30 (0.06)	15.05 (0.14)	11.71 (0.16)
FeO	11.31 (0.26)	0.90 (0.04)	6.51 (0.08)	0.89 (0.02)	24.16 (0.89)	7.70 (1.64)	13.51 (0.17)	8.12 (0.1)	20.37 (0.75)
MgO	19.39 (0.30)	20.62 (0.11)	19.34 (0.21)	20.39 (0.2)	9.90 (0.16)	32.21 (2.34)	14.66 (0.06)	15.78 (.16)	15.38 (0.13)
CaO	15.93 (0.25)	18.25 (0.12)	17.17 (0.17)	18.20 (0.18)	10.28 (0.33)	1.29 (0.52)	14.95 (0.11)	16.12 (0.15)	14.21 (0.18)
MnO									
Na ₂ O	0.03 (0.02)	0.08 (0.01)	0.07 (0.01)	0.07 (0.01)	1.26 (0.04)	0.05 (0.03)	0.12 (0.01)	0.11 (0.01)	0.13 (0.01)
K ₂ O									
P_2O_5									
S (ppm)	2761 (165)	1380 (61)	694 (53)	969 (44)	4557 (947)	514 (73)	1455 (138)	1264 (123)	3568 (533)
Total	98.89	97.98	98.21	98.27	95.48	97.57	98.42	98.05	96.51
Fe	64.84 (0.84)	6.12 (0.16)	3.59 (0.43)	4.71 (0.20)	63.12 (0.52)	63.79 (0.75)	27.23 (3.12)	26.36 (1.92)	39.56 (2.58)
Ni	0.03 (0.02)	63.66 (0.59)	0.01 (0.02)	28.69 (8.95)	0.04 (0.02)	0.29 (0.03)	20.51 (2.84)	23.53 (2.22)	16.65 (2.86)
Cu	0.19 (0.02)	0.09 (0.02)	74.28 (3.35)	40.02 (9.57)	0.62 (0.04)	0.44 (0.04)	24.58 (4.75)	22.11 (3.57)	15.05 (1.24)
S	32.77 (1.23)	28.64 (0.25)	20.92 (2.58)	24.79 (0.82)	33.94 (0.49)	32.65 (0.59)	27.95 (1.09)	28.78 (0.68)	26.72 (1.48)
0	1.74 (1.07)	n.d.	n.d.	n.d.	2.12 (0.23)	2.46 (0.32)	1.04 (0.59)	0.63 (0.09)	3.40 (1.27)
Total	99.57	98.50	98.80	98.22	99.84	99.63	101.33	101.42	101.46
S (calc.) ^a	3085 (843)	1865 (510)	284 (78)	1441 (394)	6503 (1777)	418 (114)	1510 (413)	1379 (377)	2728 (745)
S (calc.) ^b	3141 (840)	1850 (495)	360 (96)	1624 (434)	6964 (1862)	470 (126)	1574 (421)	1417 (379)	2769 (740)

^a Predicted concentration of sulfur in silicate melt using the ΔG° of O'Neill and Mavrogenes (2002) assuming ideality in the sulfide solution.

^b Predicted concentration of sulfur in silicate melt using the ΔG° of O'Neill and Mavrogenes (2002) assuming non-ideality in the sulfide solution.

n.d. = none determined.

Table 3. Results of linear least-squares regression of experimentally d	letermined sulfur solubilities in
silicate melts	
	N

	Ideal (ΔG° This Study)		Ideal (ΔG°	O+M 2002)	Non-ideal (ΔG° O+M 2002)		
	Coefficient	Std. Error	Coefficient	Std. Error	Coefficient	Std. Error	
Α	-14683	(452)	-	-	-	-	
B'	8.03	(0.25)	9.087	(0.25)	9.352	(0.25)	
С	-265.80	(24.07)	-269.40	(24.17)	-264.85	(23.68)	
A_{Si}	-	-	-27561	(500)	-27996	(500)	
A_{Ti}	16430	(1465)	-11220	(1424)	-10715	(1398)	
$A_{\rm Al}$	9295	(811)	-18450	(794)	-19000	(788)	
A_{Mg}	13767	(515)	-13970	(627)	-14512	(627)	
$A_{\rm Ca}$	19893	(737)	-7831	(856)	-8832	(871)	
$A_{\rm Fe}$	-7080	(2082)	-34274	(2376)	-34895	(2330)	
$A_{\rm Na}$	14197	(1441)	-13247	(1414)	-13713	(1388)	
$A_{\rm K}$	-	-	-29015	(2962)	-28584	(2900)	
$A_{\rm H}$	10189	(560)	-17495	(561)	-17766	(553)	
A _{Si-Fe}	117827	(5474)	116568	(6066)	117816	(5943)	
Ε	-	-	-	-	546	(129)	

	N-MORB ^a	Martian Basalt ^b	Andesite	Komatiite ^d
SiO ₂	50.42	45.50	56.52	46.80
TiO ₂	1.53	0.60	1.08	0.26
AI_2O_3	15.13	6.70	17.54	4.50
FeO	9.81	17.90	7.65	11.00
MgO	7.76	14.30	4.06	29.60
CaO	11.35	9.30	7.40	5.21
Na₂O	2.83	0.70	3.94	0.28
K ₂ O	0.14	0.05	1.31	0.14

^a Average N-MORB (Gale et al., 2013)

^b Basaltic shergottite Dhofar019 (Bridges and Warren, 2006)

^c Average andesite (Wilkinson, 1986)

^d Barberton komatiite B95-18 (Parman et al., 2003)

Figure 2

Figure 3

Figure 4

Figure 5

