1	REVISION 1
2 3 4 5	OXYGEN ISOTOPE GEOCHEMISTRY OF MAFIC PHENOCRYSTS IN PRIMITIVE MAFIC LAVAS FROM THE SOUTHERNMOST CASCADE RANGE, CALIFORNIA
6	
7	
8 9	S. J. Underwood (corresponding author)
10 11 12 13	Department of Earth Sciences Montana State University Bozeman, MT 59717 USA
14 15 16 17	Childs Geoscience Inc. 1700 West Koch, Suite 6 Bozeman, MT 59715 USA
18	M. A. Clynne
19 20 21 22 23 24	United States Geological Survey 345 Middlefield Road Mail Stop 910 Menlo Park, CA 94025 USA
25	
26	
27 28 29 30 31 32	Corresponding author contact information: E-mail: <u>SandyUnderwood903@hotmail.com</u> Home phone: (406) 522-3996 Mailing address: 50 Red Cloud Place Bozeman, MT 59715-8727

2

33 Abstract

Previously reported whole rock δ^{18} O values (5.6–7.8‰) for primitive Quaternary mafic lavas 34 35 from the southernmost Cascades (SMC) are often elevated (up to 1‰) relative to δ^{18} O values 36 expected for mafic magmas in equilibrium with mantle peridotite. Olivine, clinopyroxene, and 37 plagioclase crystals were separated from 29 geochemically well-characterized mafic lavas for 38 δ^{18} O measurements by laser fluorination to assess modification of the mantle sources by ancient 39 and modern subducted components. Oxygen isotope values of olivine phenocrysts in calc-40 alkaline lavas and contemporaneous high alumina olivine tholeiitic (HAOT) lavas generally 41 exceed depleted mantle olivine values (~4.9-5.3‰). Modern addition of up to 6 wt.% slab-42 derived fluid from Gorda serpentinized peridotite dehydration (~15‰) or chlorite dehydration $(\sim 10\%)$ within the serpentinized peridotite can provide the ¹⁸O enrichment detected in olivine 43 phenocrysts ($\delta^{18}O_{olivine} = 5.3-6.3\%$) in calc-alkaline mafic lavas, and elevate ¹⁸O in overlying 44 mantle lithosphere, as well. Specifically, although HAOT δ^{18} O_{olivine} values (5.5–5.7‰) may 45 reflect partial melting in heterogeneous ¹⁸O enriched mantle source domains that developed 46 47 during multiple subduction events associated with terrane accretion (e.g. <1 wt.% of ~15‰ 48 materials), an additional ¹⁸O enrichment of up to 2 wt.% of 10–15‰ slab-derived hydrous fluids 49 might be accommodated. The calc-alkaline primitive magmas appear to have experienced a 50 continuous range of open system processes, which operate in the mantle and during rapid magma 51 ascent to eruption, and occasionally post quench. Textural relationships and geochemistry of 52 these lava samples are consistent with blends of mafic phenocrysts and degassed melts in varying states of ¹⁸O disequilibrium. In lenses of accumulated melt within peridotite near the base of the 53 crust, co-existing olivine and clinopyroxene δ^{18} O values probably are not at isotopic equilibrium 54 because fluids introduced into the system perturbed the $\delta^{18}O_{melt}$ values. A 'sudden' melt 55 extraction event interrupts ¹⁸O equilibration in phenocrysts and poorly mixed melt(s). Rapid 56

3

57	ascent of volatile oversaturated primitive mafic magma through the crust appears to be
58	accompanied by devolatilization and crystallization of anorthite-rich plagioclase with elevated
59	$\delta^{18}O_{plag}$ values. The (Sr/P) _N values for the whole rock geochemistry are consistent with a
60	87 Sr/ 86 Sr ~0.7027 slab-derived fluid addition into the infertile peridotite source of magmas, and
61	melt devolatilization is recorded in the mixture of disequilibrium δ^{18} O values for the constituent
62	phases of lavas. Morbidity of the Gorda Plate as it undergoes intense deformation from the
63	spreading ridge to the trench is likely a key factor to developing the carrying capacity of hydrous
64	fluids and mineral phases in the slab subducting into the SMC mantle.
65	
66	
67	Keywords
68	Southernmost Cascade Range Primitive mafic lavas Oxygen isotopes Phenocrysts Laser

69 fluorination Slab-derived hydrous fluids Magma devolatilization

4

70 Introduction

71 Volcanism in the southernmost Cascades (SMC) of northern California occurs on two distinct 72 scales: (1) large volume, long-lived (up to a million years) volcanic centers ranging in 73 composition from basaltic-andesitic to rhyolitic, and (2) small volume, short-lived (one to a few 74 thousand years) basaltic to andesitic shield volcanoes and scoria cones (Guffanti et al. 1996; 75 Hildreth 2007). This latter regional mafic volcanism is sourced primarily from partial melts of 76 variably depleted mantle wedge peridotites (Borg et al. 1997), yet many of the volcanic rocks have whole rock oxygen isotope ratios ($\delta^{18}O_{\text{whole rock}} = 5.6-7.8\%$) that are considerably higher 77 78 than values typically associated with basaltic melts derived from MORB mantle (5.5±0.2‰; 79 Eiler 2001). Borg (1995) and Borg et al. (1997) attributed the high $\delta^{18}O_{\text{whole rock}}$ values of more primitive 80 81 SMC mafic lavas to large amounts of modern slab-derived hydrous fluids added into sub-arc 82 mantle previously contaminated by small amounts of subducted sediment. They resisted ascribing the high δ^{18} O values to crustal contamination due to the high compatible-element 83 84 contents of the rocks, which limit the amounts of crust that may be admixed into the magmas, and the lack of correlations between $\delta^{18}O_{\text{whole rock}}$ values and indices of differentiation. Moreover, 85 86 Borg et al. (1997, 2000) concluded that crustal contamination is minor, and rejected modification 87 of whole rock oxygen isotopic ratios by secondary processes (e.g. infiltration and exchange with 88 meteoric waters) because the rocks are young and visibly pristine. In contrast, Bacon et al. 89 (1997) argue that mafic and ultramafic crustal components are significant sources of contamination and, in part, are responsible for elevated $\delta^{18}O_{whole rock}$ values. The disparity 90 91 between the Borg et al. (1997) and Bacon et al. (1997) petrogenetic models (i.e. mantle source 92 modification vs. crustal contamination) was the impetus for this study. Previous investigations of

93	SMC mafic lavas included petrologic and geochemical studies by Clynne (1993), Borg (1995),
94	Bacon et al. (1997), Clynne and Borg (1997) and Borg et al. (1997, 2000, 2002), which produced
95	a large and comprehensive isotopic data set for the rocks, including whole rock values for Sr,
96	Nd, Pb, Hf, Os, and O isotope ratios. A fruitless search for significant crustal contamination
97	sources for the magmas was abandoned because no reasonable contaminant could be added in
98	amounts that would mutually satisfy constraints implicit in the aforementioned geochemical
99	datasets. However, we determined δ^{18} O values from phenocryst separates of olivine,
100	clinopyroxene and plagioclase from primitive lavas by laser fluorination to investigate the slab-
101	derived fluid contributions from an oxygen isotope perspective. Our results provide some
102	exciting clues for open system processes that accompany ascent of mafic magmas resulting from
103	subduction of a hot, fluid-rich slab.
104	De deserver d
104	Background
104 105	Background
104 105 106 107	Background Tectonic and geologic setting
104 105 106 107 108	Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer
104 105 106 107 108 109	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the
104 105 106 107 108 109 110	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the arc, the warm, intensely fractured, high-riding northern segment of the Gorda plate is ~6 Ma
104 105 106 107 108 109 110 111	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the arc, the warm, intensely fractured, high-riding northern segment of the Gorda plate is ~6 Ma where it obliquely converges at 36 mm/year under the large accretionary complex at the leading
104 105 106 107 108 109 110 111 112	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the arc, the warm, intensely fractured, high-riding northern segment of the Gorda plate is ~6 Ma where it obliquely converges at 36 mm/year under the large accretionary complex at the leading edge of the North American plate (Dziak et al. 2001; Chaytor et al. 2004). Volcanic activity in
104 105 106 107 108 109 110 111 112 113	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the arc, the warm, intensely fractured, high-riding northern segment of the Gorda plate is ~6 Ma where it obliquely converges at 36 mm/year under the large accretionary complex at the leading edge of the North American plate (Dziak et al. 2001; Chaytor et al. 2004). Volcanic activity in the SMC arises from arc magmatism at the southern end of the Cascadia subduction zone and
104 105 106 107 108 109 110 111 112 113 114	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the arc, the warm, intensely fractured, high-riding northern segment of the Gorda plate is ~6 Ma where it obliquely converges at 36 mm/year under the large accretionary complex at the leading edge of the North American plate (Dziak et al. 2001; Chaytor et al. 2004). Volcanic activity in the SMC arises from arc magmatism at the southern end of the Cascadia subduction zone and asthenospheric upwelling along the margin where the Gorda lithosphere termination creates a
104 105 106 107 108 109 110 111 112 113 114 115	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the arc, the warm, intensely fractured, high-riding northern segment of the Gorda plate is ~6 Ma where it obliquely converges at 36 mm/year under the large accretionary complex at the leading edge of the North American plate (Dziak et al. 2001; Chaytor et al. 2004). Volcanic activity in the SMC arises from arc magmatism at the southern end of the Cascadia subduction zone and asthenospheric upwelling along the margin where the Gorda lithosphere termination creates a slabless window (Trehu et al. 1995; Gulick et al. 2001).
104 105 106 107 108 109 110 111 112 113 114 115 116	Background Tectonic and geologic setting Arc volcanism in the Cascades results from subduction of the Gorda/Juan de Fuca/Explorer oceanic plates beneath the continental North American plate (Fig. 1a). In the southern part of the arc, the warm, intensely fractured, high-riding northern segment of the Gorda plate is ~6 Ma where it obliquely converges at 36 mm/year under the large accretionary complex at the leading edge of the North American plate (Dziak et al. 2001; Chaytor et al. 2004). Volcanic activity in the SMC arises from arc magmatism at the southern end of the Cascadia subduction zone and asthenospheric upwelling along the margin where the Gorda lithosphere termination creates a slabless window (Trehu et al. 1995; Gulick et al. 2001). Neogene east-northeast directed crustal extension of the Basin and Range province overlaps

118	vent locations (Guffanti et al. 1990, 1996). Lithospheric extension is influenced by far field
119	Pacific plate motion, and dextral shear movement in this diffuse transfer zone from the more
120	proximal Walker Lane (Blakely et al. 1997). Outboard faults of the Walker Lane dextral shear
121	zone terminate in splays that cut the northern end of the Sierra Nevada microplate, which
122	underlies at least part of the SMC rear-arc (Hildreth 2007). The Sierra Nevada microplate
123	generates localized transpressional faulting as it moves northwestwardly relative to North
124	America (Miller et al. 2001).
125	Thick Cenozoic volcanogenic cover in the SMC region likely mantles major Phanerozoic
126	lithotectonic belts that extend northwesterly from the northern Sierra Nevada (Day and Bickford
127	2004), and southeasterly from belts in the Klamath Mountains (Dickinson 2008). The accreted
128	terranes include island arcs with fringing aprons of volcanogenic sediments and carbonates,
129	ophiolites, peridotites, and subduction mélanges. All terranes are variably tectonically
130	dismembered, and the assemblages are studded with Mesozoic stitching plutons (Dickinson
131	2008). This terrane collage is expressed in regional gravity structures (Blakely et al. 1997) and
132	exposures of basement rocks can be found in deep canyons southwest of Lassen Volcanic
133	National Park. Surface faults visible outside of the Lassen Volcanic Center are Neogene, and the
134	widespread regional Quaternary mafic (basaltic to andesitic) volcanic rocks erupted from
135	hundreds of aligned vents forming a platform from coalescing lava flows.
136 137 138	SMC mafic lavas
139	Two geochemically distinct groups of mafic lavas erupted in the southernmost Cascades during
140	the past 7 Ma (Guffanti et al. 1990; Clynne 1993; Bacon et al. 1997; Borg et al. 1997). Low
141	potassium HAOT lavas are present from the arc axis eastward into the rear-arc and are typically
142	erupted from fissure vents and spatter ramparts (Guffanti et al. 1990). Subduction-related,

143	primitive calc-alkaline basaltic to mafic andesitic lavas are present from the forearc to the rear-
144	arc and are typically low volume (< 1 km ³) block lava flows erupted from small monogenetic
145	shield volcanoes or scoria cones (Clynne 1993). Relative to HAOT lavas, calc-alkaline mafic
146	lavas are dominant in both total volume erupted and in number of individual lava flows (Guffanti
147	et al. 1990, 1996; Bacon et al. 1997).
148	SMC primitive mafic lavas are defined by Borg et al. (1997) as HAOT lavas with Fo_{86-88}
149	olivine and chromian spinel with Cr# 10–25 (where $Cr# = 100[Cr]/([Cr] + [Al]))$, and calc-
150	alkaline lavas with Fo_{86-90} olivine and chromian spinel with Cr# 25–75. In addition, both
151	primitive lava types have Ni $>$ 100 ppm, Cr $>$ 200 ppm, MgO $>$ 6 wt%, and Mg# $>$ 66 (where
152	$Mg\# = 100[Mg]/([Mg] + [Fe^{2+}]))$. Figure 1b is a map of sample locations of the rocks selected
153	for this study. The fosteritic compositions of olivine phenocrysts in primitive lavas from both
154	groups are in equilibrium with mantle peridotite (Clynne and Borg 1997) and have 1225–1275 $^\circ$ C
155	crystallization temperatures, based on olivine calcium concentrations (Clynne, 1993). HAOT
156	magmas are generally hotter than calc-alkaline magmas (Clynne 1993).
157	HAOT lavas erupted in the SMC are similar to mafic tholeiitic lavas associated with the
158	Basin and Range extensional province (Bullen and Clynne 1989; Guffanti et al. 1990; Clynne
159	1993). These comparatively large volume (often $> 1 \text{ km}^3$), low viscosity lavas are typically
160	present as thin, pahoehoe flows (Clynne 1993). The HAOT lavas are sparsely phyric (generally
161	<1% phenocrysts) with olivine or plagioclase phenocrysts in holocrystalline groundmasses
162	(Clynne and Borg 1997). The major element signature of the HAOT lavas is \leq 0.2 wt% K ₂ O, 17–
163	18 wt% Al ₂ O ₃ , 48–50 wt% SiO ₂ and FeO*/MgO ratios of 0.9–1.2 (Clynne and Borg 1997;
164	Bacon et al. 1997).

165	All primitive calc-alkaline lavas are phenocryst-poor (<5%) with olivine as the primary
166	phenocryst phase, or olivine plus spinel. Clinopyroxene (chromian diopside) is present as a
167	phenocryst phase in some calc-alkaline lavas and plagioclase, when present is small, is thought
168	to crystallize during the latter stage of magma ascent (Clynne and Borg 1997; Borg et al. 1997).
169	Groundmass textures range from intergranular to intersertal. Chemically, the calc-alkaline lavas
170	are more oxidized and have higher large ion lithophile element (LILE) and light rare earth
171	element (LREE) contents, lower heavy rare earth element (HREE) contents and depletions in
172	high field strength elements (HFSE) relative to the HAOT lavas (Bacon et al. 1997). Forearc
173	calc-alkaline lavas have the strongest arc geochemical signature, and range from basalts to high-
174	MgO andesites with low abundances of incompatible trace elements, including high field
175	strength elements (Borg et al. 1997). Mafic calc-alkaline rear-arc lavas are restricted to basalts
176	with high concentrations of incompatible trace elements (Clynne and Borg 1997).
177	Olivine phenocrysts in both HAOT and most calc-alkaline lavas often contain chromian
178	spinel inclusions in equilibrium with the host olivine. Clynne (1993), Borg (1995), and Clynne
179	and Borg (1997) interpreted the general increase in Cr# of the spinel inclusions (and trace
180	element abundances in corresponding lavas) as indications of decreasing fertility of mantle
181	toward the trench. In calc-alkaline lavas, the spinel inclusions formed at ~ 12 kbar and have
182	variably higher Cr#s (Clynne and Borg 1997). In HAOT lavas, Clynne and Borg (1997)
183	postulated that crystallization of these Al-rich chromian spinel inclusions occurred at ~ 11 kbar
184	(cf. Bartels et al. 1991), and that the olivine phenocrysts must have formed contemporaneously
185	or nearly so.
186	Studies of trace element and radiogenic isotopic systematics concluded that the sub-arc
187	mantle beneath the SMC is compositionally and isotopically heterogeneous and may contain

9

188	three endmember components (Bullen and Clynne 1990; Clynne 1993; Clynne and Borg 1997;
189	Bacon et al. 1997; Borg et al. 1997, 2000, 2002). These components include: (1) depleted,
190	MORB-like mantle, (2) mantle enriched with subducted materials, and (3) mantle domains from
191	accreted Northern Sierra and Klamath island arc terranes (Bullen and Clynne 1990; Borg et al.
192	2002). An 'intraplate' component was invoked to model the geochemistry of calc-alkaline mafic
193	lavas with weak Sr enrichments and low HFSE depletions typical of rear-arc magmas (Bacon et
194	al. 1997; Borg et al. 1997).
195	
196 197	Analytical techniques
198	The SMC mafic lavas selected for this study (Table 1) are well-characterized, nearly pristine (see
199	below) rocks previously investigated by Clynne (1993), Bacon et al. (1997), Borg et al. (1997),
200	Clynne and Borg (1997), and Borg et al. (2000, 2002). Dated samples are Quaternary and mostly
201	< 0.5 Ma with a Mg# range from 66 to 82 (Clynne and Borg 1997). Four of the samples (014,
202	015, 017 and 036) are non-primitive by our definition, but phenocrysts are probably cognate to
203	their magmatic systems. Similarly, samples (020, 032, 034, and 035) with intermediate trace
204	element abundances and radiogenic isotopic ratios between HAOT and CAB (possibly the results
205	of source mixing) are included. For this work, new material was collected from precisely the
206	same field locations as in the earlier studies. Lava samples are from variable positions vertically
207	and laterally in the flows. The petrography evaluation summary can be found in the Appendix,
208	and example micrographs of the olivine, clinopyroxene and plagioclase phenocrysts are shown in
209	Fig. 2.
210	Oxygen isotope analyses
211	
212	Olivine, clinopyroxene, and plagioclase phenocryst separates were prepared by hand-picking

213 primarily 500–425 μm (but also 425–300 μm or occasionally 300–250 μm) size fractions

214	following crushing, grinding, sieving and magnetic separation of whole rock samples. All
215	separates were ultrasonically cleaned in a 10% HCl solution for ~15 minutes followed by
216	thorough deionized water rinse and drying prior to oxygen isotope analysis. The purity of each
217	separate was >99%. Olivine separates consisted of non-skeletal crystal fragments with <<1%
218	spinel inclusions. Visibly sieved plagioclase and clinopyroxene crystals were avoided, although
219	the final mineral separates sometimes exhibited slight variations in crystal color and clarity.
220	Oxygen isotope analyses were performed at the University of New Mexico stable isotope
221	laboratory using the laser fluorination microanalytical technique of Sharp (1992). A Merchantek
222	CO_2 laser catalyzed the reaction between approximately 2 mg of mineral and BrF_5 reagent. The
223	oxygen gas liberated was purified and collected on a 13X molecular sieve prior to measurement
224	of $\delta^{18}O_{mineral}$ values using a Finnigan MAT Delta XL mass spectrometer in dual-inlet mode.
225	The O isotope data were collected over 8 days on 3 separate trips to UNM during 2003-
226	2004. Data are presented in Table 1. Sample measurements were typically duplicated and
227	averaged, except where noted. All values are expressed in permil using standard delta notation
228	relative to Standard Mean Ocean Water (SMOW). A garnet standard (UWG-2, where $\delta^{18}O =$
229	5.8%; Valley et al. 1995) was run prior to, during, and following each analytical session. In
230	addition, an in-house quartz standard (Gee Whiz, where $\delta^{18}O = 12.5\%$ relative to NBS-28 =
231	9.6‰) was periodically measured. The UWG-2 standard was run a total of 29 times during
232	analyses and the mean value was 5.89‰ with $1\sigma = 0.07$ ‰. Poor quality analyses (e.g. low
233	yields) or unknown values obtained when the garnet standard exceeded 0.2‰ of the accepted
234	value were excluded. Based on the duplicated unknowns and standard analyses, the 2σ
235	uncertainty of the unknown analyses is considered $\leq 0.1\%$ for $\sim 65\%$ of the samples.

236 237 238	Results
238 239	Table 1 summarizes δ^{18} O values for 29 olivine, 9 clinopyroxene, and 15 plagioclase separates.
240	(Raw data and standard values can be viewed in the Supplemental Materials files). The higher
241	standard deviations for δ^{18} O values in some mineral separates might reflect isotopic
242	heterogeneities in the phenocrysts beyond analytical error. Previously published $\delta^{18}O_{whole rock}$
243	values have a one standard deviation = $\pm 0.1\%$ precision. Select geochemical data from Clynne
244	(1993), Bacon et al. (1997), Borg et al. (1997), and Clynne (unpublished data) are included in the
245	table.
246	Discussion
247	That the lavas in this study are primitive (with exceptions noted) has been previously
249	demonstrated (e.g. Borg et al. 2002). The focus of this investigation is analysis of δ^{18} O values for
250	constituent phases in selected lavas and then unraveling the sequences of open system processes
251	that resulted in ¹⁸ O disequilibrium phase assemblage within the primitive lavas.
252	Oxygen isotope composition of olivine phenocrysts
253 254	Highly forsteritic olivine (Fo ₈₆₋₉₁ from calc-alkaline lavas and Fo ₈₆₋₈₈ from HAOT lavas)
255	with spinel inclusions crystallized in chemical equilibrium with near-primary melts derived from
256	the mantle (Clynne and Borg 1997). In Fig. 3a, $\delta^{18}O_{olivine}$ values are plotted against
257	corresponding olivine phenocryst core Fo content. Lavas with crustal contamination (e.g. 035
258	and 031) are included in this plot to demonstrate how they compare with the other more
259	primitive samples. Figure 3b illustrates $\delta^{18}O_{olivine}$ values plotted against corresponding $\delta^{18}O_{whole}$
260	rock values acquired by extraction with ClF ₃ followed by isotope ratio mass spectrometry (Bacon
261	et al. 1997; Borg et al. 1997). Samples deviate from closed-system fractionation for olivine in
262	basaltic melts (Zhao and Zheng 2003).

12

263	Crustal contamination of magmas might move lava $\Delta^{18}O_{whole rock-olivine}$ (= $\delta^{18}O_{whole rock}$ –
264	$\delta^{18}O_{olivine}$) values significantly away from closed-system fractionation, but our samples are
265	mostly primitive mafic melts. The relationship between $\Delta^{18}O_{whole rock-olivine}$ values and lava SiO ₂
266	wt% is shown in Fig. 3c with the normal δ^{18} O array for closed system evolution of mantle
267	derived melt by fractional crystallization (Bindeman et al. 2004). Non-laser-based methods for
268	measuring $\delta^{18}O_{whole rock}$ values can be up to 0.4‰ too high (Eiler 2001) because small and
269	variable amounts of rehydrated glass, low temperature alteration, and xenocrysts are included in
270	the bulk analyses.
271	Glassy lavas are susceptible to low temperature hydration and alteration processes (Harmon
272	and Hoefs 1995; Eiler 2001; Downes et al. 2001; Bindeman 2004; Hoefs 2004). Our glassiest
273	samples lie above the closed-system crystal fractionation line. For example, sample 007 with the
274	most hyalite of the sample suite and ~7% glass, has a $\delta^{18}O_{whole rock}$ value that is ~0.6‰ higher
275	than nearby holocrystalline lavas. Lavas with low groundmass glass content have $\delta^{18}O_{whole rock}$
276	values that are probably minimally modified by rehydration. A model for producing melts with
277	elevated $\delta^{18}O_{whole rock}$ values at all magma SiO ₂ activities is required even with consideration of
278	possible post-eruption modification.
279	$\delta^{18}O_{olivine}$ values: Hydrous fluid fluxing depleted peridotites under SMC region
280	Olivine phenocrysts in the forearc and arc axis calc-alkaline lavas have a slightly wider range of

281 $\delta^{18}O_{olivine}$ values relative to the somewhat narrower range of $\delta^{18}O_{olivine}$ values for rear-arc calc-

- alkaline lavas, but no obvious cross-strike trend. HAOT lavas have olivine with the most
- 283 restricted range of slightly elevated δ^{18} O_{olivine} values, despite their broad geographic distribution.
- For the SMC mafic calc-alkaline lavas, the parameter $(Sr/P)_N$ is an indicator of slab-derived fluid
- 285 enrichment into peridotite melts, where N refers to normalization to compositions of primitive

286	mantle as defined by Sun and McDonough (1989). High and low $(Sr/P)_N$ value lavas generally
287	occur in the forearc and rear-arc respectively, and $(Sr/P)_N$ correlates inversely with ${}^{87}Sr/{}^{86}Sr$
288	(Borg et al. 1997, 2002). Accordingly, the most highly fluid-fluxed depleted peridotite sources
289	yield lavas with $(Sr/P)_N$ values > 5.5, whereas more fertile mantle with minor additions of slab-
290	derived fluid produce lavas with $(Sr/P)_N$ values < 1.3 . Further expansion of this relationship is
291	illustrated in Fig. 4a ($\delta^{18}O_{olivine}$ values versus (Sr/P) _N) and Fig. 4b ($\delta^{18}O_{olivine}$ values versus
292	⁸⁷ Sr/ ⁸⁶ Sr). The low ⁸⁷ Sr/ ⁸⁶ Sr slab-fluid component that fluxes depleted peridotites generate melts
293	with high δ^{18} O olivine phenocrysts; the group of lavas with 87 Sr/ 86 Sr > 0.7035 sourced from more
294	fertile peridotite has similar phenocryst $\delta^{18}O_{olivine}$ values (Fig. 4b).
295	In Figs. 4b-d, $\delta^{18}O_{olivine}$ values are plotted versus whole rock ${}^{87}Sr/{}^{86}Sr$, ${}^{143}Nd/{}^{144}Nd$, and
296	¹⁷⁶ Hf/ ¹⁷⁷ Hf. An ancient enrichment trajectory for a combination of subducted fluids and
297	sediments added to MORB appears on each plot based upon modeling by Borg et al. (1997,
298	2002). For hydrous fluids from modern subduction of the northern segment of the Gorda plate,
299	slab dewatering under the forearc region may have removed fluids more enriched than 20‰ from
300	the oceanic crust. However, fluids derived from the hydrated slab peridotites below the gabbro
301	layer probably includes a range of δ^{18} O values from ~15‰ fluids derived from deeper in the
302	slab, and ~10‰ metamorphic fluids from chlorite dehydration reactions (Sheppard 1986).
303	Hydrous slab fluid compositions from Borg et al. (1997, 2002) combined with δ^{18} O values of
304	15‰ are shown on all plots.
305	Discrete concentrated domains of oceanic sediment and upper altered basaltic oceanic crust
306	(cf. Eiler et al. 2000) are likely variably faulted into the deeper levels of the slab (Chaytor et al.
307	2004). At least two geochemical results can be explained by this. First, a few of our samples may
308	have been influenced by slab fluids derived from altered oceanic crust zone, an established

309	source of low δ^{18} O hydrous fluids (Gregory and Taylor 1981). Second, rising slab-derived fluids
310	generated from any source or melts encountering this type of mineralized domain may become
311	'spiked' (Borg et al. 1997). At lower pressures under the forearc and arc axis, 'spikes' from
312	channelized hydrous slab fluids (cf. Grove et al. 2002; Hildreth 2007) may be expressed most
313	clearly on the whole rock 87 Sr/ 86 Sr diagram (Fig. 4b) by the example mixing line(s) drawn
314	between the hydrous slab-derived fluid trajectory and a spike source. The continuum of $(Sr/P)_N$
315	values across the forearc and arc axis can be represented by a suite of similar mixing lines.
316	Analyses of melt inclusions in olivine phenocrysts from selected mafic tephra deposits in the
317	SMC area suggest dehydration reactions in chloritized mantle peridotites from the hot young
318	Gorda slab supplied some fluids (Walowski et al. 2015). In addition, the secondary melting of
319	materials near the slab surface postulated by Walowski et al. (2015) might be represented by
320	mixing lines similar to those in Fig. 4b. They report that primitive melts crystallizing olivine
321	were up to 3.4 wt.% H ₂ O in the Lassen area, but Figs. 4b-d are permissive of initial water
322	contents in SMC melts up to perhaps 6 wt.%.
323	Grove et al. (2002) estimate pre-eruptive melt H_2O content from <1 to >8 wt.% in primitive
324	magmas at Mt. Shasta. Stable isotope analysis of mafic phenocrysts in primitive lavas at Mt.
325	Shasta and Medicine Lake Volcano, with hydrous slab fluids and water-rich melts in the $\delta^{18}O$
326	value range of 8–14‰ (Martin et al. 2011), are comparable to our results. The edge of the
327	northern segment of the Gorda Plate subducts under Mt. Shasta, but the fractures on the northern
328	segment continue into its central deformation zone, which is subducted beneath the SMC region.
329	Detailed bathymetric maps of the Gorda Plate show active deformation including many
330	reactivated faults following original ridge fabric and complex networks of oblique shears to
331	accommodate regional plate motions (Chaytor et al. 2004). Heat flow from the slab window to

15

the south may induce additional strain in the slab that might further disrupt the δ^{18} O profiles that develop in undisturbed oceanic crust.

334 Coexisting olivine and clinopyroxene in SMC peridotite melts

335

Figure 5a illustrates $\delta^{18}O_{\text{olivine}}$ versus $\delta^{18}O_{\text{cpx}}$ values along with calculated equilibrium

337 fractionations between clinopyroxene and olivine based on the olivine crystallization temperature

range 1225–1275 °C of Clynne and Borg (1997), and using an average equilibrium fractionation

339 line of $\Delta^{18}O_{diopside-forsterite} = 0.4\%$ at ~1250 °C (Chiba et al. 1989). Compositional differences

340 between mineral separates and endmember minerals (i.e. clinopyroxene versus diopside) on

341 which calculated equilibrium fractionations are based, and uncertainty in crystallization

temperatures are too small to account for the observed scatter in paired mineral δ^{18} O values (see

343 Clynne (1993) for pyroxene analyses and Clynne and Borg (1997) for olivine analyses).

344 The data point distribution in Fig. 5a is indicative of open-system behavior (Gregory and

345 Criss 1986) that affected the olivine phenocrysts and clinopyroxene phenocrysts in melts of

346 changing ¹⁸O content. To illustrate, consider a simple case where a melt lens near the top of the

347 mantle contains $\leq 1\%$ phenocrysts of olivine and clinopyroxene in ¹⁸O equilibrium (point a). An

amount of hydrous fluid roughly $\sim 2\%$ of the total melt contacts the magma. If instantaneous

349 mixing produced a fully homogeneous liquid and adequate time for re-equilibration of olivine

350 and clinopyroxene occurred, the new olivine-clinopyroxene equilibrium in the modified melt

351 would be at point b. However, the self diffusion coefficient for ¹⁸O in a 1 mm clinopyroxene

352 phenocryst at 1250 $^{\circ}$ C is probably 10x slower than for ¹⁸O in a 1 mm olivine phenocryst (cf.

353 Bindeman 2008). Furthermore, the ¹⁸O exchange reaction rate constants likely differ

354 significantly for olivine and clinopyroxene (cf. Cole and Chackraborty 2001).

16

355	More complex processes involving multiple small fluid pulses introduced to the melts might
356	occur, or melt extraction may coincide with slab-fluid interaction, leaving no time for isotopic
357	equilibration. Occasionally two or more melt lenses may coalesce. Accordingly, it is unlikely
358	that coexisting phases achieved ¹⁸ O equilibrium in such a dynamic magma environment where
359	$\delta^{18}O_{melt}$ changes quickly relative to slower diffusion and kinetic rate limiting processes needed
360	for resetting crystal phases.

361 Plagioclase crystallization and melt devolatilization during magma ascent

362 Anorthite content in plagioclase phenocrysts ranges from An₆₀ to An₉₀ in calc-alkaline lavas and

363 from An₇₂ to An₈₃ in HAOT lavas (Clynne 1993). Clynne (1993) notes the correlation of

364 phenocryst An content with whole rock geochemistry (in particular, Sr values) and speculates the

365 calc-alkaline magmas were variably water-enriched. Figure 5b displays $\delta^{18}O_{whole rock}$ versus

366 δ^{18} O_{plag} values for SMC mafic magmas.

367 The calc-alkaline magmas are likely to be unusually buoyant from fluid-enrichment in the mantle. If plagioclase crystallization began under elevated $x_{H_{2}O}$ conditions (cf. Hammer 2008), 368 those phenocrysts should record melt ¹⁸O enrichment. However, plagioclase crystallization 369 370 during magma ascent (Clynne and Borg 1997; Borg et al. 1997) would have occurred 371 simultaneously with melt devolatilization. The ~1150 °C isotherm for anorthite in a basaltic melt (Zhao and Zheng 2003) is a reasonable crystallization temperature, but accounting for shifts in 372 ¹⁸O fractionation in plagioclase due to an increasing albite component is not feasible with this 373 study. At eruption, water lost from the melt could have reduced $\delta^{18}O_{melt}$ by 0.4% or more (Eiler 374 2001) as evidenced by some samples in Figs. 3b and 3c. Melt ¹⁸O enrichment may be higher yet 375 376 in samples where devolatilization of CO_2 , SO_2 or both occurred (Walowski et al. 2016).

17

377	Quaternary climate fluctuations and evidence for temporary ponds and lakes are common in								
378	this region, and orographic effects generate local and extreme variability in annual precipitation.								
379	In the Hat Creek Basin, the range of δ^{18} O values for cold springs is -14.0 to -9.1‰, and for								
380	lakes is -8.7 to -4.2‰ (Rose et al. 1996). Meteoric water infiltration especially into more								
381	vesicular lavas may produce cryptic low temperature alteration that can reduce $\delta^{18}O_{whole \ rock}$								
382	relative to $\delta^{18}O_{plag}$ values (Fig. 5b). The effect of meteoric water infiltration into the vesicular								
383	HAOT lava (013) is likely the cause of the ¹⁸ O shift after plagioclase crystallization in the hotter,								
384	drier tholeiitic magma.								
385	Finally, the ¹⁸ O disequilibria of the solids and melt suggest that all open system processes								
386	acting on magma were often swift enough to significantly change at least one phase and induce								
387	varying levels of δ^{18} O heterogeneity of other phases. For example, the poor correlation of								
388	$\delta^{18}O_{olivine}$ with (Sr/P) _N in (Fig. 4a) could indicate that elevated ¹⁸ O slab-derived hydrous fluid								
389	interacted with discrete mantle melt lenses, but it reveals nothing about the degree of ¹⁸ O isotopic								
390	equilibrium achieved between the melt and crystal phases or isotopic homogeneity of the								
391	magma. Perhaps only limited ¹⁸ O equilibration would be possible in the upper mantle melt lenses								
392	because buoyancy would drive melt extraction.								
393	Comparison with Cascade arc primitive lavas to the north								
394	To compare the SMC with other Cascade arc at primitive lavas (Fig. 6), we begin with the Mt.								
395	Adams volcanic field (MAVF), where Jicha et al. (2009) concluded that only a minor								
396	contribution of fluid derived from subducted sediment is present in the mantle source.								

397 Phenocryst δ^{18} O_{olivine} values in MAVF primitive lavas reflect minor ¹⁸O enrichment in the

398 source, while δ^{18} O_{olivine} values from dryer HAOT magmas may have originated from a more

depleted peridotite. Continuing south into the central Oregon Cascades, Ruscitto et al. (2010)

400	analyzed fluid inclusions in olivine phenocrysts, as well as $\delta^{18}O_{olivine}$ values for host olivine from
401	non-primitive mafic calc-alkaline lavas for which numerical restoration was performed to reach
402	initial melt compositions. The investigators concluded a seawater-like slab fluid fluxed depleted
403	peridotite in the mantle wedge, sometimes with a Sr-rich component added, and initial melts
404	ranged from $1.7-3.6$ wt.% H ₂ O.
405	Mt. Shasta overlies the projection of the subducting transform fault (Blanco Fracture Zone)
406	between the main Juan de Fuca Plate and the northern segment of the Gorda Plate (Fig. 1a).
407	Primitive mafic andesites at Mt. Shasta have pre-eruptive water contents of 6.5 wt.% and Grove
408	et al. (2005) further argued for 10–15 wt.% H_2O in some magmas where initial mantle melts
409	were "water oversaturated". Martin et al. (2011) confirm the slab-derived fluid input for Mt.
410	Shasta primitive mafic lavas. The range of $\delta^{18}O_{olivine}$ values is strikingly similar to those from
411	SMC calc-alkaline lavas. Although many of the SMC primitive melts may have had \sim 3.4 wt.%
412	H ₂ O during olivine crystallization (Walowski et al. 2015), our work supports higher, transient
413	releases of hydrous slab-derived fluids from the deformed Gorda Plate during subduction. The
414	modern addition of hydrous fluids may include up to 6 wt.% of deep slab-derived hydrous fluid
415	ranging from 15‰ in the forearc to 10‰ metamorphic reaction fluids farther east with sporadic
416	release of slab-fluids from altered-upper oceanic basaltic crust (0–6‰), which might yield low
417	$\delta^{18}O_{whole rock}$ values (cf. Walowski et al. 2016). In addition, although generally depleted in LILE,
418	the SMC lithospheric mantle has been metasomatized in some components (e.g. Fe, Al, and
419	exhibits a weak subduction signature), probably as a result of passage of arc magmas
420	intermittently at least since the early Cretaceous.
421	The modern SMC mantle lithosphere, a heterogeneous collage of mantle domains enriched
422	during ancient subduction (Leeman et al. 1990; Clynne 1993; Clynne and Borg 1997; Borg et al.

19

423	1997; 2000; 2002), is the source of HAOT magmas (Borg et al. 1997, 2002). Our HAOT
424	$\delta^{18}O_{olivine}$ values are consistent with ¹⁸ O enrichment by ancient sediment incorporation into the
425	mantle, supplemented by modern enrichment via diffuse regional metasomatism (e.g. up to 2
426	wt.% by hydrous slab-fluids in Figs. 4b-d). Consider that HAOT primitive melts at rear-arc
427	Medicine Lake Volcano (constructed on a similar terrane collage) may be least influenced by
428	modern fluids and sediment input because Mt. Shasta provides pressure relief for excess slab
429	volatiles (Donnelly-Nolan et al. 2008). Martin et al. (2011) believe the source of HAOT melts at
430	Mt. Shasta is ¹⁸ O enriched through focused metasomatic processes. Accordingly, the SMC
431	mantle lithosphere may be affected by regionally distributed volatiles that pass through it leading
432	to HAOT melts that are relatively ¹⁸ O enriched over HAOTs at Medicine Lake Volcano, but less
433	than those at Mt. Shasta. Perhaps additional support for this argument are the estimates of initial
434	magmatic volatiles (CO ₂ and SO ₂) from melt inclusions in olivine (Walowski et al. 2016) and
435	volcanic CO ₂ component present in cold springs in the Hat Creek drainage (Rose et al. 1996).
436	
437	Implications
128	Clearly more detailed δ^{18} investigations are needed to determine timing of sleb fluid entry into

Clearly, more detailed δ^{10} investigations are needed to determine timing of slab-fluid entry into 438 439 these melts. Our analysis of mineral separates suggests it may be possible to gain more insight 440 into melt or fluid additions to the deep reservoirs from examining individual olivine phenocrysts. Ion microprobe analyses for δ^{18} O profiling across selected single phenocrysts is needed for 441 442 detailed chemical and isotopic information to clarify phase relationships and zoning or diffusion 443 profiles from which process rates and timing constraints for fluid (or melt) addition or loss may 444 be determined. In particular, 020 has olivine and clinopyroxene with chemically similar Cr-445 spinel inclusions (Clynne 1993) and it may be especially valuable for understanding some

446	conditions in the mantle peridotite where segregated melt coalesces. In situ isotopic analysis of
447	clinopyroxene by laser ablation for ⁸⁷ Sr/ ⁸⁶ Sr and ¹⁴³ Nd/ ¹⁴⁴ Nd might yield details regarding the
448	sequence of events in the upper mantle melt lens. For lavas postulated to be blends of primitive
449	CAB and HAOT melts (e.g. 032), are multiple populations olivine phenocrysts with distinct
450	$\delta^{18}O_{olivine}$ values or profiles detectable? Lastly, larger skeletal olivines might provide $\delta^{18}O_{skeletal}$
451	olivine values to supplement plagioclase analyses for open system processes during final shallow
452	magma ascent and melt degassing.
453	
454	Acknowledgments
455 456	We thank Grace Winer for preparing mineral separates, Viorel Atudorei and Dan Breeker for
457	their assistance in the stable isotope laboratory of the Earth and Planetary Sciences Department
458	at the University of New Mexico, and P. B. Larson, A. Matthews, J. R. Bowman, and P. I.
459	Nabelek for stimulating discussions of the mineral δ^{18} O data. M. Skidmore provided valuable
460	input in the earlier stages of this project. This manuscript significantly benefited from
461	improvements based on thoughtful reviews by C. Bacon, L. Hammersley, W. Leeman, O.
462	Müntener, M. Loewen, and two anonymous reviewers. Funding for this work was provided by
463	the National Science Foundation (EAR 9983769) to T. Feeley and a Geological Society of
464	America grant (7821-04) to Underwood for field work. Any use of trade, firm, or product names
465	is for descriptive purposes only and does not imply endorsement by the U.S. Government.
466	

467	References
468	Bacon, C.R., Bruggman, P.E., Christiansen, R.L., Clynne, M.A., Donnelly-Nolan, J.M., and
469	Hildreth, W. (1997) Primitive magmas at five Cascade volcanic fields: Melts from hot,
470	heterogeneous sub-arc mantle. Canadian Mineralogist, 35, 397-423.Bartels, K.S., Kinzler,
471	R.J., and Grove, T.L. (1991) High pressure phase relations of primitive high-alumina basalts
472	from Medicine Lake volcano, northern California. Contributions to Mineralogy and
473	Petrology, 108, 253–270.
474	Bindeman, I. (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal
475	analysis. In K. Putirka, and F. Tepley, Eds., Minerals, Inclusions and Volcanic Processes,
476	69, p. 445–478. Reviews in Mineralogy and Geochemistry, Mineralogical Society of
477	America, Washington, D.C.
478	Bindeman, I.N, Ponomareva, V.V., Bailey, J.C., and Valley, J.W. (2004) Volcanic arc of
479	Kamchatka: A province with high- δ^{18} O magma sources and large-scale 18 O/ 16 O depletion of
480	the upper crust. Geochimica et Cosmochimica Acta, 68, 841–865.
481	Blakely, R.J., Christiansen, R.L., Guffanti, M., Wells, R.E., Donnelly-Nolan, J.M., Muffler,
482	L.J.P., Clynne, M.A., and Smith, J.G. (1997) Gravity anomalies, Quaternary vents, and
483	Quaternary faults in the southern Cascade Range, Oregon and California: Implications for
484	arc and backarc evolution. Journal of Geophysical Research, 102, 22513–22527.
485	Borg, L.E., Blichert-Tott, J., and Clynne, M.A. (2002) Ancient and modern subduction zone
486	contributions to the mantle sources of lavas from the Lassen region of California inferred
48/	from Lu-Hf isotopic systematics. Journal of Petrology, 43, 705–723.
488	Borg, L.E., Brandon, A.D., Clynne, M.A., and Walker, R.J. (2000) Re-Os isotopic systematics of
489	Science Letters 177-201-217
490	Science Letters, 1/7, 301-317. Porg J. F. Clympa M.A. and Pullon, T.D. (1007) The variable role of slab derived fluids in the
491	generation of a suite of primitive calc alkaline layes from the southernmost Cascades
492	California Canadian Mineralogist 35 425-452
495	Borg I. F. (1905) The origin and evolution of magmas from the Lassen region of the
495	southernmost Cascades 229 n Dissertation University of Texas Austin
496	Bullen T.D. and Clynne M.A. (1990) Trace element and isotopic constraints on magmatic
497	evolution at Lassen Volcanic Center, Journal of Geophysical Research 95, 19671–19691
498	Bullen T D and Clynne M A (1989) Coupled spatial chemical and isotopic characteristics of
499	primitive lavas from the Lassen region. California, IAVCEI Continental Magmatism
500	Abstracts. New Mexico Bureau of Mines and Mineral Resources. Bulletin 131, p. 33.
501	Chauvel, C., and Blichert-Toft, J. (2001) A hafnium isotope and trace element perspective on
502	melting of the depleted mantle. Earth and Planetary Science Letters, 190, 137–151.
503	Chaytor, J.D., Goldfinger, C., Dziak, R.P., and Fox, C.G. (2004) Active deformation of the
504	Gorda plate: Constraining deformation models with new geophysical data. Geology, 32,
505	353–356.
506	Chiba, H., Chacko, T., Clayton, R.N., and Goldsmith, J.R. (1989) Oxygen isotope fractionations
507	involving diopside, forsterite, magnetite, and calcite; Application to geothermometry.
508	Geochimica et Cosmochimica Acta, 53, 2985–2995.
509	Clynne, M.A., and Borg, L.E. (1997) Olivine and chromian spinel in primitive calc-alkaline and
510	tholeiitic lavas from the southernmost Cascade range, California: A reflection of relative
511	fertility of the source. Canadian Mineralogist, 35, 453–472.

Clynne, M.A. (1993) Geologic studies of the Lassen Volcanic Center, Cascade Range,

512

22

513 California, 413 p. Dissertation, University of California, Santa Cruz. Cole, D.R., and Chackraborty, S. (2001) Rates and mechanisms of isotopic exchange. In J.W. 514 515 Valley, and D.R. Cole, Eds., Stable Isotope Geochemistry, 43, p. 83–223. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, D.C. 516 517 Davis, A.S., Clague, D.A., Cousens, B.L., Keaten, R., and Paduan, J.B. (2008) Geochemistry of 518 basalt from the North Gorda segment of the Gorda Ridge: Evolution toward ultraslow 519 spreading ridge lavas due to decreasing magma supply. Geochemistry Geophysics 520 Geosystems, 9, Q04004, doi:10.1029/2007GC001775. 521 Day, H.W., and Bickford, M.E. (2004) Tectonic setting of the Jurassic Smartville and Slate Creek complexes, northern Sierra Nevada, California. Geological Society of America 522 523 Bulletin, 116, 1515–1528. 524 Dickinson, W.R. (2008) Accretionary Mesozoic-Cenozoic expansion of the Cordilleran 525 continental margin in California and adjacent Oregon. Geosphere, 4, 329-353. 526 Donnelly-Nolan, J.M., Grove, T.L., Lanphere, M.A., Champion, D.E., and Ramsey, D.W. (2008) 527 Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in 528 the southern Cascades. Journal of Volcanology and Geothermal Research, 177, 313–328. 529 Downes, H., Thirlwall, M.F., and Trayhorn, S.C. (2001) Miocene subduction-related magmatism 530 in southern Sardinia: Sr-Nd- and oxygen isotopic evidence for mantle source enrichment. 531 Journal of Volcanology and Geothermal Research, 106, 1–21. Dziak, R.P., Fox, C.G., Bobbitt, A.M., and Goldfinger, C. (2001) Bathymetric map of the Gorda 532 533 Plate: Structural and geomorphological processes inferred from multibeam surveys. Marine 534 Geophysical Research, 22, 235–250. 535 Eiler, J.M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In J.W. 536 Valley, and D.R. Cole, Eds., Stable Isotope Geochemistry, 43, p. 319–364. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, D.C. 537 538 Eiler, J.M., Crawford, A., Elliott, T., Farley, K.A., Valley, J.W., and Stolper, E.M. (2000) 539 Oxygen isotope geochemistry of oceanic-arc lavas. Journal of Petrology, 41, 229–256. 540 Gregory, R.T., and Criss, R.E. (1986) Isotopic exchange in open and closed systems. In: J.W. Valley, H.P. Taylor, and J.R. O'Neil, Eds., Stable Isotopes in High Temperature Geological 541 542 Processes, 16, p. 91–127. Reviews in Mineralogy, Mineralogical Society of America, 543 Washington, D.C. 544 Gregory, R.T., and Taylor, H.P. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust. Samail ophiolite. Oman: Evidence for δ^{18} O buffering of the oceans by deep 545 (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical 546 547 Research, 86, 2737–2755. 548 Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkins-Tanton, L.T., Chatterjee, N., and 549 Müntener, O. (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern 550 California: products of fractional crystallization of H₂O-rich mantle melts. Contributions to 551 Mineralogy and Petrology, 148, 542-565. 552 Grove, T.L., Parman, S.W., Bowring, S.A., Price, R.C., and Baker, M.B. (2002) The role of an 553 H₂O-rich fluid component in the generation of primitive basaltic andesites and andesites 554 from the Mt. Shasta region, N. California. Contributions to Mineralogy and Petrology, 142, 555 375-396.

23

556 Guffanti, M., Clynne, M.A., Smith, J.G., Muffler, L.P.J., and Bullen, T.D. (1990) Late Cenozoic 557 volcanism, subduction, and extension in the Lassen region of California, southern Cascade range. Journal of Geophysical Research, 95, 19453–19464. 558 559 Guffanti, M., Clynne, M.A., and Muffler, L.J.P. (1996) Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on 560 561 basalt influx to the lower crust. Journal of Geophysical Research, 101, 3003–3013. 562 Gulick, S.P.S., Meltzer, A.S., Henstock, T.J., Levander, A. (2001) Internal deformation of the 563 southern Gorda plate: Fragmentation of a weak plate near the Mendocino triple junction. 564 Geology, 29, 691–694. 565 Harmon, R.S., and Hoefs, J. (1995) Oxygen isotope heterogeneity of the mantle deduced from global ¹⁸O systematics of basalts from different geotectonic settings. Contributions to 566 Mineralogy and Petrology, 120, 95–114. 567 Hammer, J.E. (2008) Experimental studies of the kinetics and energetic of magma 568 569 crystallization. In K. Putirka, and F. Tepley, Eds., Minerals, Inclusions and Volcanic 570 Processes, 69, p. 9–59. Reviews in Mineralogy and Geochemistry, Mineralogical Society of 571 America, Washington, D.C. 572 Hildreth, W. (2007) Quaternary Magmatism in the Cascades-Geologic Perspectives. United States Geological Survey Professional Paper 1744, 125 p. 573 574 Hoefs, J. (2004) Stable isotope geochemistry, 244 p. Springer-Verlag, New York. 575 Jicha, B.R., Hart, G.L., Johnson, C.M., Hildreth, W., Beard, B.L., Shirey, S.B., and Valley, J.W. 576 (2009) Isotopic and trace element constraints on the petrogenesis of lavas from the Mount 577 Adams volcanic field, Washington. Contributions to Mineralogy and Petrology, 157, 189-578 207. 579 Leeman, W.P., Smith, D.R., Hildreth, W., Palacz, Z., and Rogers, N. (1990) Compositional 580 diversity of Late Cenozoic basalts in a transect across the Southern Washington Cascades: 581 Implications for subduction zone magmatism. Journal of Geophysical Research, 95, 19561– 582 19582. 583 Martin, E., Bindeman, I., and Grove, T.L. (2011) The origin of high-Mg magmas in Mt Shasta 584 and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction. Contributions to 585 586 Mineralogy and Petrology, 162, 945–960. Mattev, D., Lowry, D., and Macpherson, C. (1994) Oxygen isotope composition of mantle 587 peridotite. Earth and Planetary Science Letters, 128, 231-241. 588 589 McBirney, A.R. (1968) Petrochemistry of the Cascade andesite volcanoes. Oregon Department 590 of Geology and Mineral Industries, Bulletin 62, 101-107.Miller, M.M., Johnson, D.J., Rubin, C.M., Dragert, H., Wang, K., Qamar, A., and Goldfinger, C. (2001) GPS-591 determination of along-strike variation in Cascadia margin kinematics: Implications for 592 593 relative plate motion, subduction zone coupling, and permanent deformation. Tectonics, 20, 594 161–176. 595 Rose, T.P., Davisson, M.L., and Criss, R.E. (1996) Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. Journal of 596 597 Hydrology, 179, 207-236. 598 599 600

24

- Ruscitto, D.M., Wallace, P.J., Johnson, E.R., Kent, A.J.R., and Bindeman, I.N. (2010) Volatile
 contents of mafic magmas from cinder cones in the Central Oregon High Cascades:
- 603 Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary
- 604 Science Letters, 298, 153–161.Sharp, Z.D. (1992) *In situ* laser microprobe techniques for 605 stable isotope analysis. Chemical Geology, 101, 3–19.
- 606 Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. In: J.W.
- Valley, H.P. Taylor, and J.R. O'Neil, Eds., Stable Isotopes in High Temperature Geological
 Processes, 16, p. 165–183. Reviews in Mineralogy, Mineralogical Society of America,
- 609 Washington, D.C.
- Sun, S.-S., and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts:
 Implications for mantle composition and processes. In: A.D. Saunders, and M.J. Norry, Eds.,
 Magmatism in the Ocean Basins, Geological Society, London, Special Publications, 42, p.
 313–345.
- Trehu, A., and The Mendocino Working Group (1995) Pulling the rug out from under California:
 Seismic images of the Mendocino Triple Junction region. EOS Transactions of the
 American Geophysical Union, 76, 380–381.
- Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., and Spicuzza, M.J. (1995) UWG-2, a
 garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with
 laser heating. Geochimica et Cosmochimica Acta 59, 5226–5231.
- Walowski, K.J., Wallace, P.J., Clynne, M.A., Rasmussen, D.J. and Weis, D. (2016) Slab melting
 and magma formation beneath the southern Cascade arc. Earth and Planetary Science
 Letters, http://dx.doi.org/10.1016/j.epsl.2016.03.044.
- Walowski, K.J., Wallace, P.J., Hauri, E.H., Wada, I., and Clynne, M.A. (2015) Slab melting
 beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nature
 Geoscience, 8, 404–409.
- Zhao, Z.-F., and Zheng, Y.-F. (2003) Calculation of oxygen isotope fractionation in magmatic
 rocks. Chemical Geology, 193, 59–80.
- 628 629

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

25

630 631	Appendix
632 633	Petrography
634	Although the lavas studied are generally sparsely phyric, each sample contains at least one
635	olivine phenocryst population that always includes euhedral or slightly rounded crystals up to ~ 3
636	mm across. The large olivine phenocrysts host chromian spinel inclusions (Fig. 2a) that were
637	investigated by Clynne and Borg (1997). Some lavas contain smaller skeletal olivine phenocrysts
638	(Fig. 2d) and in these rocks, the larger olivine phenocrysts commonly have thin, sometimes more
639	Fe-rich, hopper growths. All rear-arc and approximately half of the forearc lavas contain skeletal
640	olivine microphenocrysts. In the study area, at least half of the calc-alkaline forearc lavas (1009,
641	017, 015, 020, 036, 033, 037, 034 and 032) and northern arc axis lavas (012 and 001) have a sub-
642	population (<3%) of large olivine phenocrysts with orthopyroxene coronas. Some lavas contain
643	olivine-bearing crystal clots (012, 013, 031, 032, 033, 035, 036 and 039).
644	Orthopyroxene crystals >0.25 mm across are present in three calc-alkaline basaltic andesitic
645	lavas (036 and 037 in the southern forearc, and 001 on the northern arc axis) and one northwest
646	forearc calc-alkaline basaltic lava (017). The orthopyroxene crystals often include minor
647	populations with nonequilibrium textures including resorption and sieved zones with clear rim
648	overgrowth, and sutured grain boundaries in crystal clots.
649	Clinopyroxene crystals (Figs 2b) are restricted to calc-alkaline lavas where they occur in
650	glomerocrysts (sometimes with olivine) and as individual phenocrysts. Clinopyroxene is most
651	common in lavas from the northwestern forearc and arc axis regions. It is sporadically present in
652	lavas from the southwest forearc and sparse in lavas erupted from back-arc vents. In several
653	lavas, particularly those from the northwestern forearc region, clinopyroxene crystals have

654 sieved zones surrounded by clear overgrowths. Clinopyroxene in glomerocrysts frequently have

26

655	sutured grain boundaries, in addition to resorption/regrowth textures such as sieved horizons
656	surrounding clear cores. Cumulate olivine and pyroxene is present in 036 (cf. Clynne 1993).
657	In 6 of 11 lavas collected from the southern forearc and arc axis areas, no plagioclase
658	phenocrysts are present; the other samples contain multiple plagioclase populations including
659	both zoned (Fig. 2c) and sieved crystals with clear overgrowths. In the northwest forearc and
660	northern arc axis areas, multiple plagioclase populations are often present; only two samples
661	(014 and HAOT 013) have a single population of clear plagioclase. Five of nine northeast rear-
662	arc lavas contain multiple plagioclase populations. Finally, multiple plagioclase populations
663	including sieved crystals with clear overgrowths are present in HAOT samples 002 and 030.
664	Groundmass textures of the calc-alkaline lavas range from intergranular to hyalo-ophitic,
665	and the three HAOT lavas are sub-ophitic to intersertal (cf. Clynne 1993). Proportions and
666	overall coarseness of groundmass phases (i.e. plagioclase, pyroxenes, opaques, and olivine) vary
667	among the lavas; 22 samples contain <1% glass, while the three glassiest hyalo-ophitic samples
668	contain 7–10% glass. Diktytaxitic textures are common in HAOT samples. Vesicularity is low
669	(<1%) in ~50% of the lavas; other samples have heterogeneous vesicles sizes and shapes with up
670	to 20% vesicularity in a few cases.
671	Many samples (69%) contain olivine with thin iddingsite coatings. Other secondary mineral
672	phases present include hyalite (31% of the samples), hydrous iron oxides (31% of the samples),
673	and zeolites (17% of the samples). In nearly all samples, the secondary minerals constitute $\ll 1$
674	vol% of the rock. Although about 40% of the lavas contain quartz xenocrysts or small hornfels
675	xenoliths, these materials constitute $<< 1$ vol% of the rock in all cases.

27

677 Figure Captions

678

679 Figure 1. (a) Map of the Cascade volcanic arc tectonic setting modified after McBirney (1968). 680 Accreted oceanic lithosphere of the Columbia Embayment is bounded by dashed lines. Late 681 Cenozoic volcanic rocks from High Cascades are dark gray fill with major composite volcanoes 682 and volcanic centers indicated by triangles: LVC = Lassen Volcanic Center, MS = Mount Shasta, 683 MLV = Medicine Lake Volcano, MMc = Mount McLoughlin, CLV = Crater Lake Volcano, NV = Newberry Volcano, TS = Three Sisters, MJ = Mount Jefferson, MH = Mount Hood, MSH = 684 685 Mount Saint Helens, MA = Mount Adams, SVF = Simcoe Volcanic Field, MR = Mount Rainier, GP = Glacier Peak, MB = Mount Baker, MG = Mount Garibaldi, MC = Mount Cayley, MM = 686 Meager Mountain. SMC = Southernmost Cascades (inset box). (b) Map of sample sites for SMC 687 688 little-evolved mafic lavas in this study. Calc-alkaline lavas erupted from vents located between 689 the trench and modern arc axis (i.e. projection of upper slab surface depth of ~100 km to over-690 riding plate surface) are in the forearc (circles). Rear-arc vents (triangles) are east of the arc axis 691 (squares). CA samples symbols with $(Sr/P)_N > 3.2$ are solid filled and calc-alkaline samples with $(Sr/P)_N < 3.2$ are open (Borg et al. 1997). HAOT lavas = diamonds. 692

693

Figure 2. (a) Olivine phenocryst with spinel inclusions from LF02-034 in ppl. (b)

695 Clinopyroxene phenocryst from LF02-012 in xp. (c) Plagioclase phenocryst with zoning and
696 microphenocrysts from LF02-001 in xp. (d) Skeletal olivine from LF02-031 in xp. Scale bar in
697 all images is 0.2 mm.

698

Figure 3. (a) Olivine δ^{18} O values versus olivine phenocryst core Fo content (Clynne 1993; Borg 699 1995; Clynne and Borg 1997). (b) Olivine δ^{18} O values by laser fluorination versus whole rock 700 δ^{18} O values by resistance heating of SMC little-evolved mafic lavas (Clynne 1993; Borg et al. 701 1997; Bacon et al. 1997). An equilibrium line for $\delta^{18}O_{melt} = \delta^{18}O_{olivine} + \Delta^{18}O_{glass-olivine}$ drawn for 702 closed system crystal fractionation, where $\Delta^{18}O_{glass-olivine} = 0.7\%$ for olivine (heavy line) basaltic 703 melt (Zhao and Zheng 2003). (c) Measured difference values ($\Delta^{18}O_{\text{whole rock-olivine}} = \delta^{18}O_{\text{whole rock}}$ 704 $\delta^{18}O_{\text{olivine}}$) versus whole rock SiO₂ content. Samples with 5–10 vol.% groundmass glass have 705 large symbols with italicized labels. Crustally contaminated LF02-035 and LF02-031, and 706 707 cumulate-bearing LF02-036 are labeled in boldface. The thick line represents the expected range of melts produced by closed-system crystal fractionation as described in (b), but using the 708

normal δ^{18} O array from Bindeman et al. (2004). Symbols as described in Fig. 1b.

710

Figure 4. (a) $\delta^{18}O_{\text{olivine}}$ values versus whole rock $(\text{Sr/P})_{\text{N}}$. (b) Phenocryst $\delta^{18}O_{\text{olivine}}$ values versus whole rock ${}^{87}\text{Sr}/{}^{86}\text{Sr}$. (c) Phenocryst $\delta^{18}O_{\text{olivine}}$ values versus whole rock ${}^{143}\text{Nd}/{}^{144}\text{Nd}$. (d) Phenocryst $\delta^{18}O_{\text{olivine}}$ values versus whole rock ${}^{176}\text{Hf}/{}^{177}\text{Hf}$. Silicate melts are solid lines with tick marks in 1 wt.% increments and hydrous fluids are dashed lines with tick marks in 1 wt.% increments. Mixing lines between hydrated peridotite and spike have tick marks at 0.1 wt.% increments. North Gorda glass MORB from Davis et al. (2008); East Pacific MORB from Chauvel and Blichert-Toft (2001). Symbols as described in Fig. 1b. (All model concentrations are tabulated in Supplemental Materials Model Values file).

28

- **Figure 5.** (a) Olivine and clinopyroxene δ-δ plot for phenocryst separates. Calculated
- 722 $\Delta^{18}O_{\text{diopside-forsterite}}$ is 0.41‰ at 1225 °C and 0.38‰ at 1275 °C from Chiba et al. (1989). Dotted
- 123 lines are example trajectories that connect points a and b described in the text. Non-primitive 124 sample 017 has core olivine $Fo_{82.5}$ and $(Sr/P)_N < 0.32$. (b) Plagioclase and whole rock δ-δ plot.
- Fractionation factors for ¹⁸O between anorthite and basalt were calculated at 1150 $^{\circ}$ C using the
- relationships of Zhao and Zheng (2003). The effects of melt devolatilization during magma
- ascent and meteoric water infiltration in lava flows on $\delta^{18}O_{\text{whole rock}}$ values are depicted with
- 728 arrows. Symbols as in Fig. 1b.
- 729
- 730 **Figure 6.** Oxygen isotope compositions for olivine phenocrysts from SMC mafic lavas and
- selected primitive Cascade mafic lavas. Symbols for SMC samples are described in Fig. 1b.
- 732 Olivine oxygen isotope values from calc-alkaline lavas from Mt. Shasta, Medicine Lake
- 733 Volcano, Central Oregon Cascades and the Mt. Adams Volcanic Field are indicated by 'X' and
- olivine in HAOT lavas are smaller '+' symbols (Martin et al. 2011; Ruscitto et al. 2010; Jicha et
- al. 2009). Mantle peridotite δ^{18} O_{olivine} range is indicated by the variably shaded area (Mattey et
- 736 al. 1994).
- 737
- 738

29

739 740 Table 1. Summary of mineral and whole rock ¹⁸O/¹⁶O data for selected Southernmost Cascades mafic lavas.

Sample	Equivalent sample number ª	Type /	SiO ₂ wt	MaO wt	Mg# ª	(Sr/P) _N ª	δ ¹⁸ Ο _{WR} ‰ ^a	olivine $\delta^{18}O\ \%\ ^b$		cpx δ ¹⁸ O ‰ ^b		plag δ ¹⁸ O ‰ ^b	
number		Locale °	% a	% a				Mean	1 Std Dev	Mean	1 Std Dev	Mean	1 Std Dev
LC86-1009		CA / FA	58.17	7.57	70.6	6.59	6.9	5.59					
LF02-037	LC88-1303	CA / FA	57.61	7.49	70.8	4.79	7.0	5.88	0.13	6.00	0.04	10.89	
LF02-033	LC88-1310	CA / FA	56.14	10.20	77.3	5.88	7.4	5.90	0.01				
LF02-036 ^d	LC88-1301	CA / FA	55.69	14.35	82.3	4.73	6.8	5.80	0.05	6.06			
LF02-019	LC86-1006	CA / FA	54.49	8.34	72.7	2.42	6.7	5.62	0.01			9.06	
LF02-035 ^e	LC88-1305	CA / FA	53.75	10.87	76.7	3.28	7.8	6.31	0.03				
LF02-015 ^d	LB92-168; LC92-1703	CA / FA	53.45	7.65	69.5	4.90	6.6	5.84	0.00	5.91	0.08		
LF02-014 ^d	LB92-167; LC92-1702	CA / FA	53.09	8.15	71.4	5.81	6.2	5.31	0.08	5.58	0.07	6.11	0.08
LC88-1308		CA / FA	51.46	9.09	73.3	5.96	7.2	5.62	0.05				
LF02-020 ^e	LC86-1005	CA / FA	51.30	11.10	71.5	3.76	5.6	5.63	0.10	5.58		6.32	
LF02-017 ^d	LB92-166; LC92-1701	CA / FA	51.09	11.06	75.7	2.89	6.6	5.61	0.03	5.46	0.03	7.09	
LF02-031	LC88-1314	CA / FA	50.82	8.43	68.1	1.47	7.2	6.24	0.10				
LF02-032 ^e	LC88-1312	CA / FA	50.80	9.97	70.1	5.36	6.9	5.87	0.11			6.71	0.09
LF02-034 ^e	LC87-1056	CA / FA	50.57	8.24	70.5	5.10	6.4	5.96	0.10				
LF02-012	LC85-743	CA / AA	58.76	5.90	69.3	5.72	6.9	5.74	0.05	5.75	0.09	10.49	
LF02-001	LC83-255	CA / AA	54.49	7.73	73.2	5.47	6.9	5.49	0.05	5.70		7.98	
LF02-039	LC88-1371	CA / AA	51.99	8.34	69.2	3.21	5.7	5.85	0.04	6.22		6.48	
LF02-038	LM92-2443	CA / AA	51.20	8.15	68.5	1.55	6.5	6.01	0.07				
LF02-006	LC86-831	CA / RA	52.81	7.09	66.7	1.52	6.7	5.89	0.01			9.32	
LF02-005	LC86-829	CA / RA	51.50	9.20	73.7	3.89	6.7	5.67	0.04			6.34	
LF02-007	LC85-671	CA / RA	51.35	8.05	68.0	1.67	7.4	5.63	0.03				
LF02-004	LM91-2116	CA / RA	51.17	10.15	75.5	3.32	6.0	5.59	0.05			6.01	0.14
LF02-011	LM87-1333	CA / RA	50.80	7.75	68.1	1.52	6.7	5.49	0.05			7.28	
LF02-009	LC82-905	CA / RA	50.37	8.43	69.0	1.68	5.9	5.65	0.20				
LF02-010	LM87-1384	CA / RA	49.64	10.67	74.2	1.35	6.9	5.87	0.04			8.77	
LF02-008	LC86-834	CA / RA	49.37	10.46	72.6	1.92	6.4	5.79	0.05				
LF02-030	LC86-1046	HAOT / AA	48.20	10.10	66.5		6.1	5.66	0.01				
LF02-013	LC84-514	HAOT / AA	48.58	9.90	69.2		5.8	5.74	0.05			6.35	0.02
LF02-002	LC84-569	HAOT / RA	49.58	8.71	67.8		5.8	5.54	0.01				

⁷⁴¹ 742

^a Data from cross-referenced samples of Borg et al. (1997), Bacon et al. (1997), Clynne (1993), Clynne unpublished data. Mg# = 100 [Mg] / ([Mg] + [Fe²⁺]). ^b All oxygen values are reported in ‰ SMOW and are uncorrected. Single values have no standard deviation. 743

744

745 ^c Lava type: CA = calc-alkaline and HAOT = high alumina olivine tholeiite. Location relative to arc axis: FA =746 forearc, AA = arc axis, RA = rear-arc.

^d Non-primitive lava. 747

748 ^e Lava with trace element abundances and radiogenic isotope ratios suggestive of source mixing or mixing between 749 CAB and HAOT.

FIGURE 1

FIGURE 2

Figure 3

Figure 4

Figure 5

Figure 6