Energetics of heterometal substitution in ε-Keggin [MO₄Al₁₂(OH)₂₄(OH₂)₁₂]^{6/7/8+} ions

DANA REUSSER¹, WILLIAM H. CASEY² AND ALEXANDRA NAVROTSKY^{1,*}

¹Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616, U.S.A. ²Department of Chemistry, Department of Geology, University of California at Davis, Davis, California 95616, U.S.A.

ABSTRACT

Aluminum hydroxide ions in the ε -Keggin structure provide geochemical models for how structure affects reactivity, and consequently, how aqueous ions evolve to bulk precipitates. Here we report a systematic comparison of heterometal substitution into the MAl₁₂ ε -Keggin structure, where M = Ga^{III}, Al^{III}, or Ge^{IV}. We use direct solution calorimetric techniques to compare the energetics of these substituted structures and complement these measurements with density functional theory (DFT) calculations to further examine this structure as a host to alternative heterometals. The measured enthalpy of solution (ΔH_{soln}) at 28 °C in 5 N HCl for the selenate salts of GaAl⁷⁺₁₂ and AlAl⁷⁺₁₂, was measured as -869.71 ± 5.18 and -958.04 ± 2.79 kJ/mol, respectively. The enthalpies of formation from the elements, ΔH^{o}_{fel} , for the selenate salts of GaAl⁷⁺₁₂ and AlAl⁷⁺₁₂, was measured as -869.8 kJ/mol, respectively, supplanting previous values. We compare structural relationships to both experimental and calculated energies to identify the driving forces that control these substitutions and stability, and establish that tetrahedral M-O bond lengths are closely related to the strain and stability of the structure. We show that substitution depends on the size and valence of the heterometal through energetics, and we extend our thermodynamic and structural relationships to other not yet synthesized MAl₁₂ clusters (M = Si^{IV}, Fe^{III}, Be^{II}, Mg^{II}, or Zn^{II}).

Keywords: Thermodynamics, calorimetry, DFT, ɛ-Keggin, aluminum hydroxide, Al₁₃