American Mineralogist, Volume 99, pages 1355-1359, 2014

Sb⁵⁺ and Sb³⁺ substitution in segnitite: A new sink for As and Sb in the environment and implications for acid mine drainage

STUART J. MILLS^{1,*}, BARBARA ETSCHMANN², ANTHONY R. KAMPF³, GLENN POIRIER⁴ AND MATTHEW NEWVILLE⁵

¹Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia

²Mineralogy, South Australian Museum, North Terrace, Adelaide 5000 Australia + School of Chemical Engineering, The University of Adelaide, North Terrace 5005, Australia

³Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ⁴Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada

⁵Center for Advanced Radiation Studies, University of Chicago, Building 434A, Argonne, National Laboratory, Argonne, Illinois 60439, U.S.A.

ABSTRACT

A sample of Sb-rich segnitite from the Black Pine mine, Montana, U.S.A., has been studied by microprobe analyses, single-crystal X-ray diffraction, and μ -EXAFS and XANES spectroscopy. Linear combination fitting of the spectroscopic data provided Sb⁵⁺:Sb³⁺ = 85(2):15(2), where Sb⁵⁺ is in octahedral coordination substituting for Fe³⁺ and Sb³⁺ is in tetrahedral coordination substituting for As⁵⁺. Based upon this Sb⁵⁺:Sb³⁺ ratio, the microprobe analyses yielded the empirical formula Pb_{1.02} H_{1.02}(Fe²⁺_{2.36}Sb⁵⁺_{0.41}Cu²⁺_{0.27})_{S2.04}(As⁵⁺_{1.78}Sb³⁺_{0.07}S⁶⁺_{0.02})_{S1.88}O₈(OH)_{6.00}. The crystal structure refinement and bond valence analysis are consistent with these cation site assignments. The formation of Sb-rich segnitite opens new possibilities for Sb sinks within the supergene zone. Segnitite may, in fact, be an ideal host for the sequestering of several toxic elements for pH < 2. At higher pH values, As is more likely to be incorporated into schwertmannite and ferrihydrite.

Keywords: μ-EXAFS, XANES, crystal structure, segnitite, antimony, valency, alunite supergroup, oxidized zone