Quadratite, AgCdAsS₃: Chemical composition, crystal structure, and OD character Luca Bindi,^{1,*} Paul G. Spry,² Paola Bonazzi,¹ Emil Makovicky,³ and Tonci Balić-Žunić⁴

¹Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy

²Department of Geological and Atmospheric Sciences, 253 Science I, Iowa State University, Ames, Iowa 50011-3212, U.S.A.

³Department of Geography and Geology, University of Copenhagen, Østervoldgade 10, DK-1350 Copenhagen K, Denmark

⁴Natural History Museum of Denmark, Østervoldgade 5-7, DK-1350 Copenhagen K, Denmark

ABSTRACT

A re-investigation of the crystal structure of quadratite, ideally AgCdAsS₃, was undertaken using a single crystal from the type locality, Lengenbach, Binntal, Switzerland. The average of five electron microprobe analyses led to the empirical formula $(Ag_{0.994}Cd_{0.738}Pb_{0.231}Cu_{0.005}Mn_{0.003}Fe_{0.004}Zn_{0.002}Cr_{0.001})_{\Sigma=1.984}(As_{0.955}Sb_{0.003})_{\Sigma=0.958}S_{3.058}$. A single-crystal structure refinement (R1 = 4.84% for 558 observed reflections) shows that quadratite crystallizes in the space group $P4_322$ and exhibits an atomic arrangement similar to that of the recently approved new mineral manganoquadratite, AgMnAsS₃. Like manganoquadratite, quadratite adopts a galena-derivative framework, with metal atoms occupying all the available octahedral interstices, although only M1 and M2 cations, occupied mainly by Cd, adopt a fairly regular octahedral coordination; the M3 cation, occupied by Ag, is located outside the center cavity in a square-pyramidal coordination, whereas Pb at the split position M3' coordinates six S atoms. Arsenic also adopts a 3 + 3 asymmetrical coordination, thus forming the AsS₃ pyramidal groups that typically occur in sulfosalts.

The structure can be also described as a stacking of BAB slabs [A: $(Cd,Ag)CdS_2$ atomic plane; B: $(Ag,Pb)AsS_2$ atomic plane] along [001]. The rectangular unit cell of these slabs is oriented diagonally to the **a** axes of quadratite and consecutive slabs are related via interlayer twofold rotation operations parallel either to [100] or to [010]. This ambiguity leads to an OD structure with various possible stacking sequences, from which the tetragonal space group $P4_322$ was observed.

Keywords: Quadratite, Cd-sulfosalts, crystal structure, chemical composition, OD character, Lengenbach