A computational model of cation ordering in the magnesioferrite-qandilite (MgFe₂O₄-Mg₂TiO₄) solid solution and its potential application to titanomagnetite (Fe₃O₄-Fe₂TiO₄)

RICHARD J. HARRISON,^{1,*} ERIKA J. PALIN,^{1,†} AND NATASHA PERKS²

¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, U.K. ²Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.

ABSTRACT

Cation ordering in the magnesioferrite-qandilite (MgFe₂O₄-Mg₂TiO₄) solid solution has been investigated using an interatomic potential model combined with Monte Carlo simulations. The dominant chemical interaction controlling the thermodynamic mixing behavior of the solid solution is a positive nearest-neighbor pairwise interaction between tetrahedrally coordinated Fe³⁺ and octahedrally coordinated Ti⁴⁺ (J_{FeTi}^{To}). The predicted cation distribution evolves gradually from the Néel-Chevalier model to the Akimoto model as a function of increasing J_{FeTi}^{To} , with $J_{FeTi}^{To} = 1000 \pm 100$ K providing an adequate description of both the temperature and composition dependence of the cation distribution and the presence of a miscibility gap. Although Mg is a good analog of Fe²⁺ in end-member spinels, a comparison of model predictions for MgFe₂O₄-Mg₂TiO₄ with observed cation ordering behavior in titanomagnetite (Fe₃O₄-Fe₂TiO₄) demonstrates that the analog breaks down for Fe₃O₄-rich compositions, where a value of J_{FeTi}^{To} closer to zero is needed to explain the observed cation distribution. It is proposed that screening of Ti⁴⁺ by mobile charge carriers on the octahedral sublattice is responsible for the dramatic reduction in J_{FeTi}^{To} . If confirmed, this conclusion will have significant implications for attempts to create a realistic thermodynamic model of titanomagnetite.

Keywords: Magnesioferrite, qandilite, titanomagnetite, cation distribution, computer simulations