Low-temperature magnetism of alabandite: Crucial role of surface oxidation

JAN ČUDA,^{1,*} TOMÁŠ KOHOUT,^{2,3} JAN FILIP,¹ JIŘÍ TUČEK,¹ ANDREI KOSTEROV,^{4,5} JAKUB HALODA,⁶ ROMAN SKÁLA,³ EERO SANTALA,⁷ IVO MEDŘÍK,¹ AND RADEK ZBOŘIL¹

¹Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic ²Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki University, Finland

³Institute of Geology, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 269, 165 00 Prague, Czech Republic
⁴Earth Physics Department, Faculty of Physics, Saint Petersburg University 198504 Peterhoff, Saint Petersburg, Russia
⁵Resource Center "Geomodel," Saint Petersburg University 198504 Peterhoff, Saint Petersburg, Russia
⁶Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
⁷Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki University, Finland

ABSTRACT

Manganese(II) monosulphide crystallizes into three different polymorphs (α -, β -, and γ -MnS). Out of these, α -MnS, also known as mineral alabandite, is considered the most stable and is widespread in terrestrial materials as well as in extraterrestrial objects such as meteorites.

In this study, a low-temperature antiferromagnetic state of α -MnS was investigated using macroscopic magnetic measurements as induced and remanent field-cooled (FC) and zero-field-cooled (ZFC) magnetizations and magnetic hysteresis. Both natural alabandite and synthetic samples show: (1) Néel temperatures in a narrow temperature range around 153 K, and (2) a rapid increase of the magnetization around 40 K. An anomalous magnetic behavior taking place at about 40 K was previously ascribed to the magnetic transition from a high-temperature antiferromagnetic to a low-temperature ferromagnetic state documented for non-stoichiometric α -MnS slightly enriched in manganese. However, our detailed microscopic observations and, in particular, oxidation experiments indicate that the anomalous magnetic behavior around 40 K is caused by the presence of an oxide layer of ferrimagnetic hausmannite (Mn₃O₄) on the surface of α -MnS rather than being an intrinsic property of nearly stoichiometric α -MnS.

Keywords: Alabandite (MnS), hausmannite (Mn₃O₄), troilite (FeS), magnetism