Density functional calculations of the enthalpies of formation of rare-earth orthophosphates[†]

JAMES R. RUSTAD*

Sullivan Park Research Center, Corning, Inc., Corning, New York 14831, U.S.A.

ABSTRACT

Electronic structure calculations are carried out to estimate the enthalpies of formation of rareearth orthophosphates from their oxides. The calculated enthalpies of formation are systematically less exothermic than the measured values. The discrepancy is almost entirely in the electronic total energy calculated from density functional theory, and appears to be intrinsic to the generalized-gradient exchange-correlation functional used. However, comparison with electronic structure calculation of the enthalpies of formation of alkaline earth oxyacid carbonates, silicates, and sulfates suggests that near chemical accuracy can be obtained for the enthalpies of formation of most of the compounds in the phosphate system by applying a scaling factor obtained from the simpler alkaline earth oxyacids. The increasingly exothermic ΔH_{ox}^{r} with increasing ionic radius (i.e., LaPO₄ is more exothermic than ScPO₄) results from the higher charge localization on the oxide anion (O^{2–}) relative to the phosphate anion (PO₄^{3–}), making it more favorable, in a relative sense, to pair the smaller cation with the oxide anion than with the phosphate anion. This effect is also manifested in ΔH_{ox}^{r} of the other oxyacids, such as carbonates, silicates, and sulfates.

Keywords: Rare-earth elements, density functional calculations, thermodynamic properties, phosphate minerals

INTRODUCTION

The rare-earth (RE) phosphates are versatile refractory materials with a wide range of geological and technological applications (Ushakov et al. 2002). This paper reports the results of a series of density functional electronic structure calculations of the thermodynamic properties of rare-earth phosphates. The purpose of the paper is to determine how well the calculated enthalpies of formation from the oxides match measured values, and to compare the potential sources of error coming from lattice thermal contributions to the enthalpy, zero-point energies, and electronic energies (the "electronic" energy is the total energy *E* obtained from the density functional electronic structure calculation at 0 K). Another aim of the paper is to obtain a more fundamental understanding why the enthalpies of formation of these compounds from the oxides are more exothermic for the larger rare earth elements.

This information is important for several reasons. First, studies of a systematic series of minerals (Jain et al. 2011) can be an important component of developing better density functionals for thermal properties. Second, studies of interfacial properties of these minerals, in contact with both aqueous and silicate solvents, will require construction of potential functions (Pedone et al. 2006). Although it is common to use structural and elastic properties to construct empirical potential functions, energetics of reactions such enthalpies of formation from the oxides ΔH_{ox}^{i} (298.15 K) (e.g., $\frac{1}{2}Ln_2O_3 + \frac{1}{2}P_2O_5 = LnPO_4$) are often not considered. Tables of electronic enthalpies of forma-

tion at 0 K, if available (and accurate, of course) would aid in the construction of transferable potential functions, which may eventually be capable of predicting thermodynamic properties of complex mixtures, such as glasses and melts. It is hoped that input on formation energies from first-principles methods will facilitate these efforts.

METHODS

Electronic structure calculations are carried out with density functional theory (DFT) using the projector augmented wave (PAW) method (Bloechl 1994) implemented in VASP 4.6.11 (Kresse and Furthmuller 1996; Kresse and Hafner 1993), with PAW pseudopotentials (Kresse and Joubert 1999) constructed for the PBE exchange correlation functional (Perdew et al. 1996). The calculations on the lan-thanide elements use the Ln_3 trivalent lanthanide pseudopotentials. These provide an implicit treatment of the felectron shell across the series of rare earth elements. Calculations for yttrium and scandium use the Y_sv and Sc_sv pseudopotentials. LuPO₄ failed to achieve SCF convergence, so this was eliminated from the study, along with Pm (no experimental data) as well as Eu and Yb, due to the lack of Eu_3 and Yb_3 PAW pseudopotentials. DFT+U calculations are carried out for Ce₂O₃ and CePO₄ using the standard Ce PBE pseudopotential and a U value of 3 eV, which was found to be an optimal value both for Ce₂O₃ (Fabris et al. 2007) and CePO₄ (Adelstein et al. 2011). The DFT+U calculations use the method of Dudarev et al. (1998).

The cutoff energy was set to 500 eV for all systems. A γ -centered reciprocal space grid was used for each system. The following **k**-point grid sizes were used: For the C-oxide, monazite, and xenotime structures, $7 \times 7 \times 7$; for the A-oxide structures, $15 \times 15 \times 15$; for *h*-P₄O₁₀ and *o*'-P₂O₅, $7 \times 7 \times 7$. Structure optimizations were done with both volume and lattice vectors varying simultaneously. Final structures were run with no optimization to ensure that the absolute value of the pressure was below 0.1 GPa. Final configurations outside this range were optimized again until the pressure criterion was satisfied.

RESULTS AND DISCUSSION

Structure and energetics of RE₂O₃ oxides

Tables 1, 2, and 3 give the optimized structural parameters and molar volume for the A-, B-, and C-type RE₂O₃ oxides,

^{*} E-mail: rustadjr@corning.com

[†] Open Access, thanks to the author's funding. Article available to all readers via GSW (http://ammin.geoscienceworld.org) and the MSA web site.

		Calculated							Measured			
		This work		Hiro	Hirosaki et al. (2003)		W	Wu et al. (2007)				
	a (Å)	c (Å)	V (Å3)	a (Å)	<i>c</i> (Å)	V (Å ³)	a (Å)	c (Å)	V (Å ³)	a (Å)	<i>c</i> (Å)	V (ų)
$La_2O_3^*$	3.936	6.200	83.20	3.936	6.166	82.73	3.938	6.173	82.90	3.940	6.13	82.410
Ce ₂ O ₃ †	3.944	6.180	83.26	3.941	6.182	83.14	3.944	6.191	83.38	3.891	6.059	79.440
Ce ₂ O ₃ (PBE+U) AFM	3.897	6.229	81.91									
Ce ₂ O ₃ (PBE+U) FM	3.892	6.224	81.66									
Pr ₂ O ₃ ‡	3.896	6.135	80.64	3.895	6.126	80.50	3.899	6.135	80.76	3.859	6.0131	77.550
Nd_2O_3 §	3.867	6.082	78.77	3.859	6.072	78.30	3.859	6.090	78.54	3.831	5.999	76.250
* Koehler and Wollan (1	953).											

TABLE 1. Structural parameters for hexagonal A-type RE_2O_3 (volumes in Å³/formula unit)

+ Schiller (1985)

‡ Hase (1963).

§ Boucherle and Schweizer (1975)

TABLE 2. Structural parameters for monoclinic B-type RE₂O₃ (volume in Å³/formula unit)

	a (Å)	b (Å)	<i>c</i> (Å)	β	V (ų)
		calc (this w	ork)		
Sm ₂ O ₃	14.384	3.631	8.916	100.26	76.36
Gd_2O_3	14.177	3.565	8.770	100.30	72.68
		calc*			
Sm ₂ O ₃	14.381	3.635	8.911	100.15	76.41
Gd_2O_3	14.195	3.566	8.770	100.18	72.80
		measure	d		
Sm ₂ O ₃ †	14.198	3.627	8.856	99.99	74.66
Gd_2O_3 #	14.032	3.583	8.742	100.13	72.11
* Wu et al. (2007).					

+ Boulestix et al. (1971).

‡ Zhang et al. (2008a).

Structural parameters for cubic C-type RE₂O₃ (volume in Å³/ TABLE 3. formula unit)

		Ca	lculated		Measu	ured
	This	work	Hirosaki e	t al. (2003)		
	a (Å)	V (ų)	a (Å)	V (ų)	a (Å)	V (ų)
Sc ₂ O ₃	9.911	60.85			9.846*	59.66
Y_2O_3	10.701	76.58			10.596†	74.36
La₂O₃	11.387	92.29	11.392	92.40		
Ce_2O_3	11.414	92.94	11.410	92.84	11.111‡	85.73
Pr_2O_3	11.290	89.94	11.288	89.89		
Nd_2O_3	11.178	87.30	11.176	87.24		
Sm ₂ O ₃	10.998	83.14	10.995	83.07	10.930§	81.61
Gd_2O_3	10.819	79.16	10.812	78.99	10.790§	78.51
Tb₂O ₃	10.744	77.50			10.729	77.10
Dy_2O_3	10.675	76.02	10.670	75.92	10.670§	75.92
Ho ₂ O ₃	10.609	74.63	10.605	74.54	10.580§	74.02
Er_2O_3	10.544	73.26	10.544	73.26	10.548#	73.35
Tm ₂ O ₃	10.472	71.77			10.480**	71.94
* Knop a	nd Hartley (1	963).				
	izzi et al. (19	201.				

‡ Kuemmerle and Heger (1999). § Bartos et al. (1993).

|| Saiki et al. (1985).

Fert (1962)

** Hase (1963).

respectively, along with values obtained from X-ray measurements (Koehler and Wollan 1953; Fert 1962; Hase 1963; Knop and Hartley 1968; Boulesteix et al. 1971; Boucherle and Schweizer 1975; Saiki et al. 1985; Schiller 1985; Bartos et al. 1993; Greis et al. 1994; Baldinozzi et al. 1998; Kuemmerle and Heger 1999; Zhang et al. 2008). The large RE oxides La₂O₃, Ce_2O_3 , Nd_2O_3 , and Pr_2O_3 are known to be most stable in the hexagonal A-type structure. Previous work (Wu et al. 2007) compared the electronic energies of a series of rare-earth oxides in the A-type and monoclinic B-type structure using the same method used here (PAW-PBE), but did not report results for the cubic C-type structure. An earlier PAW-GGA study (Hirosaki et al. 2003) gave structures but not energies for the C-type oxides. Table 4 gives the calculated energies for the suite of RE oxide compounds in the C-type structure as well as the A-type structure for La, Ce, Nd, and Pr, and the B-type structure for Sm and Gd. The results are very close to those previously calculated. The results show that PAW-PBE predicts (incorrectly) that La, Ce, Nd, Pr, and Sm are most stable in the C-type structure. This was already noted for Ce₂O₃ (Da Silva 2007). As shown in Tables 1-3, calculated molar volumes are generally 2-3% greater than measured values, except for A- Ce_2O_3 , which is 4.8% above the measured value. This finding is consistent with the general tendency of functionals in the generalized gradient approximation to overestimate bond lengths. The PAW PBE+U calculations give improved calculations of the volume and lattice parameters for the $A-Ce_2O_3$ (this study; Da Silva 2007) and C-Ce₂O₃ (Da Silva 2007) phases. They are also reported to stabilize A-type Ce₂O₃ over C-type Ce₂O₃ (Da Silva 2007) (DFT+U calculations were not done on C-Ce₂O₃ in the present study).

Structures and energetics of REPO₄ phosphates

Tables 5 (xenotime) and 6 (monazite) give the optimized structural parameters for the RE orthophosphates. Comparisons are made with the X-ray measurements (Ni et al. 1995; Milligan et al. 1982). The data overestimate volumes by close to 2% for the monazite-type REPO₄, and 2-3% for the xenotime REPO₄, except for $CePO_4(m)$, which is overestimated by 4.6% with PBE and Ce 3 pseudopotential. The structure is improved slightly in the PBE+U treatment. The structural calculations are in line with those of the oxides.

Calculated electronic energies for the REPO₄ are given in Table 7. Lanthanum, Ce, Pr, and Nd are all most stable in the monazite structure, in agreement with observations (although actual measured values for ΔG_{ox}^{f} of the monazite-xenotime polymorphs are not available for any of the REPO₄). For NdPO₄, the monazite and xenotime structures are nearly isoenergetic. For Tb-Tm, as well as Sc and Y, the xenotime structure is most stable, also in line with observations. SmPO₄ and GdPO₄ are also calculated to be more stable in the xenotime structure. The PBE+U calculations on CePO₄ give a low-energy antiferromagnetic structure almost isoenergetic with the ferromagnetic solution. The PBE+U treatment increases the stabilization of FM-CePO₄(m) relative to FM-CePO₄(x) by about 20 kJ/mol [searches for AFM structures were not carried out for $CePO_4(x)$ in the present study].

TABLE 4. Energies of RE₂O₃ phases (eV/formula unit)

5		· · ·		,	
	C-type	A-type	B-type	A-type*	B-type*
Sc ₂ O ₃	-45.2887			-44.6351	-44.9478
Y_2O_3	-45.5652			-45.2299	-45.3291
La ₂ O ₃	-42.0219	-41.9007		-41.9079	-41.8576
Ce ₂ O ₃	-40.7455	-40.6337		-40.6376	-40.6027
Ce ₂ O ₃ (PBE+U) AFM		-41.6814			
Ce ₂ O ₃ (PBE+U) FM		-41.6791			
Pr ₂ O ₃	-41.0188	-40.8856		-40.8945	-40.8744
Nd ₂ O ₃	-41.2258	-41.0714		-41.0803	-41.0746
Sm ₂ O ₃	-41.5301		-41.3677	-41.3363	-41.362
Gd ₂ O ₃	-41.8636		-41.6746	-41.6172	-41.6718
Tb ₂ O ₃	-41.9675			-41.7017	-41.7655
Dy ₂ O ₃	-42.0428			-41.7398	-41.8283
Ho ₂ O ₃	-42.1142			-41.8004	-41.8883
Er ₂ O ₃	-42.2007			-41.8377	-41.9627
Tm ₂ O ₃	-42.1943			-41.7963	-41.9437
* Wu et al. (2007).					

TABLE 5. Structural parameters for REPO₄ in the xenotime (zircon) structure (volume in Å³/formula unit)

		Calculated			Measured			
	a (Å)	c (Å)	V (Å3)	a (Å)	<i>c</i> (Å)	V (ų)		
ScPO ₄ *	6.661	5.837	64.740	6.574	5.791	62.568		
YPO ₄ *	6.976	6.079	73.950	6.895	6.028	71.633		
TbPO₄†	6.984	6.086	74.205	6.931	6.061	72.784		
DyPO₄†	6.953	6.066	73.328	6.905	6.038	71.981		
HoPO₄†	6.934	6.050	72.710	6.877	6.018	71.154		
ErPO₄†	6.905	6.026	71.823	6.851	5.997	70.363		
TmPO₄†	6.880	5.998	70.968	6.829	5.980	69.726		
LaPO ₄	7.274	6.347	83.945					
CePO ₄	7.261	6.342	83.575					
CePO ₄ (PBE+U‡)	7.233	6.314	82.62					
PrPO₄	7.209	6.293	81.768					
NdPO₄	7.178	6.247	80.473					
SmPO₄	7.089	6.187	77.728					
GdPO ₄	7.015	6.116	75.248					
* Milligan et al. (1	982).							
† Ni et al. (1995).								
Ferromagnetic electronic state.								

Structures and energetics of P2O5

For calculation of the electronic energies of formation from the oxides, the total energy of the P_2O_5 reference phase is needed. In the study of Ushakov et al. (2002), the reference phase was the hexagonal h-P₂O₅. This is a molecular solid having discrete adamantane-like P4O10 molecules held together by van der Waals interactions that are not accounted for in the DFT. The omission of this contribution to the cohesive energy of P₂O₅ will produce a systematic error in the calculations, with the calculated $\Delta E_{\text{ox}}^{\text{f}}$ being consistently too negative. It is known that the h-P2O5 phase is metastable with respect to a polymeric (i.e., non-molecular) orthorhombic o'-P2O5 compound (Greenwood and Earnshaw 1985) in which molecular Van der Waals forces presumably play a much smaller role in the bonding. As an upper bound to the required correction, it could be assumed that the total energies of $h-P_2O_5$ and $o'-P_2O_5$ are equal and the total energy of $o'-P_2O_5$ could be used as a surrogate for h-P₂O₅. The structural parameters and energies of both phases are given in Table 8 and compared with X-ray measurements (Cruickshank 1964; Stachel et al. 1995). The calculated electronic energy of o'-P2O5 is 14.84 kJ/mol lower than h-P₂O₅. Here, all calculations are reported relative to h-P₂O₅.

Formation of REPO₄ from RE₂O₃ and P₂O₅

Table 9 shows the electronic energies at 0 K [$\Delta E_{ox}^{f}(0)$ = $E(REPO_4) - \frac{1}{2}(E(P_2O_5) + E(RE_2O_3))$ for the reaction:

TABLE 6. Structural parameters for REPO₄ in the monazite structure (volume in Å³/formula unit)

		Ca	alculate	ed		Measured*				
	a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)	a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)
LaPO ₄	6.932	7.142	6.543	103.6	78.71	6.831	7.071	6.503	103.3	76.43
CePO ₄	6.916	7.135	6.535	103.5	78.40	6.788	7.016	6.465	103.4	74.98
AFM1†	6.900	7.110	6.510	103.5	77.62					
AFM2	6.883	7.099	6.522	103.5	77.44					
AFM3	6.908	7.113	6.515	103.5	77.82					
FM‡	6.899	7.105	6.518	103.6	77.64					
$PrPO_4$	6.873	7.079	6.485	103.8	76.61	6.760	6.981	6.434	103.5	73.80
NdPO ₄	6.840	7.040	6.452	103.8	75.42	6.735	6.950	6.405	103.7	72.83
SmPO ₄	6.803	6.961	6.394	104.2	73.38	6.682	6.888	6.365	103.9	71.10
$GdPO_4$	6.713	6.887	6.358	104.2	71.24	6.644	6.841	6.328	104.0	69.78
TbPO ₄	6.687	6.858	6.337	104.2	70.42					
* Ni et al. (1995).										
+ Antife	t Antiferromagnetic electronic states for PBE+U.									

‡ Ferromagnetic electronic state for PBE+U.

TABLE 7. Calculated energies of REPO₄ (eV/formula unit)

	0	
	x-type	m-type
ScPO ₄ (x)	-48.845	
YPO ₄ (x)	-49.760	
LaPO₄(m)	-48.215	-48.337
CePO₄(m)	-47.679	-47.805
CePO ₄ (PBE+U) AFM1		-48.280
CePO ₄ (PBE+U) AFM2		-48.304
CePO ₄ (PBE+U) AFM3		-48.251
CePO ₄ (PBE+U) FM	-47.970	-48.302
PrPO ₄ (m)	-47.779	-47.843
NdPO₄(m)	-47.846	-47.854
SmPO₄(m)	-47.923	-47.835
GdPO₄(m)	-48.013	-47.819
TbPO ₄ (x)	-48.027	-47.788
DyPO ₄ (x)	-48.025	
HoPO ₄ (x)	-48.022	
ErPO ₄ (x)	-48.031	
TmPO ₄ (x)	-47.991	

$\frac{1}{2}P_2O_5 + \frac{1}{2}RE_2O_3 = REPO_4$

and compared with the measured enthalpies of formation from the oxides at 298.15 K from Ushakov et al. (2002). Figure 1 shows the correlation between $\Delta H_{0x}^{f}(298.15)$ and the ionic radius of the RE cation noted by Ushakov et al. (2002), with the cube root of calculated molar volume of the cubic oxide serving as a convenient surrogate for the "computed" value of the ionic radius of the RE cation (this is simpler than, for example, trying to average the calculated RE-O distances). GdPO₄, in the monazite structure, deviates most strongly from the correlation. GdPO₄ shows no anomalous predictions in the structural properties of either the RE₂O₃ or REPO₄ phases, and does not deviate strongly in the experimental correlation [Fig. 3 in Ushakov et al. (2002)] so the reasons for the large deviation from the energy vs. size correlation are not clear, except to note that using the xenotime polymorph for $GdPO_4(x)$, which is, incorrectly, calculated to be lower in energy than $GdPO_4(m)$, lies much closer to the correlation than $GdPO_4(m)$. TbPO₄(m) also lies off the correlation, however, in the case of terbium, $TbPO_4(x)$ is, correctly, calculated to lower in energy than TbPO₄(m), and falls close to the main trend. There is an indication of a separate, steeper trend for the monazite structures than the xenotime structures. Such a difference was not apparent on the experimental correlation; $\Delta H_{ox}^{f}(298.15)$ for TbPO₄(x) and TbPO₄(m) were measured within 3 kJ/mol of each other. This can

	(a,b,c) (Å)	(α , β , γ) °		V (ų)	E (eV/formula unit)			
$h-P_2O_5$	7.592	87.6		109.1	-48.9743			
measured*	7.43	87		102.1				
	a (Å)	b (Å)	c (Å)					
o'-P ₂ O ₅	9.534	4.952	7.308	345.0	-49.1281			
measured	9.139	4.89	7.162	320.1				
* Cruicksha	ank (1964).							
† Stachel e	† Stachel et al. (1995).							

TABLE 8. Structural parameters and energies of P₂O₅ phases

TABLE 9.	Measured	vs. cal	culated	electronic	energ

	$\Delta H_{ox}^{t}(298.15)$	$\Delta E_{ox}^{f}(0)$	$\Delta E_{ox}^{f}(0)$	$\Delta E_{ox}^{f}(0) MGP/$	$\Delta H_{ox}^{t}(298.15)$ -
	kJ/mol*	kJ/mol	kJ/mol MGP	$\Delta H_{ox}^{f}(298.15)$	$[\Delta E_{ox}^{f}(0)$
					MGP/0.85])
					kJ/mol
YPO ₄ (x)	-282.6	-240.2	-236	0.84	-5.0
LaPO₄(m)	-321.4	-279.7	-270	0.84	-3.8
LaPO ₄ (x)		-268.0			
CePO ₄ (m)	-317.2	-289.6	-241†		
PBE+U AFM	1	-287.1			
PBE+U AFM	2	-284.8			
PBE+U AFM	3	-282.0			
PBE+U FM		-287.0			
CePO ₄ (x)		-277.4			
PrPO ₄ (m)	-312.2	-281.1	-271	0.87	6.6
PrPO ₄ (x)		-274.8			
NdPO₄(m)	-312.0	-273.2	-262	0.84	-3.8
NdPO ₄ (x)		-272.3			
SmPO₄(m)	-301.8	-257.1	-245	0.81	-13.6
SmPO₄(x)		-265.5			
GdPO₄(m)	-296.2	-231.6	-236†		
GdPO ₄ (x)		-250.3			
TbPO ₄ (x)	-286.1	-246.6	-243	0.85	-0.4
TbPO ₄ (m)	-283.5	-223.5			
DyPO ₄ (x)	-283.9	-242.8	-239	0.84	-2.7
HoPO ₄ (x)	-278.8	-239.1	-235	0.84	-2.3
ErPO ₄ (x)	-275.6	-235.7	-232	0.84	-2.7
TmPO ₄ (x)	-268.0	-232.2	-228	0.85	0.2
ScPO ₄ (x)	-209.8	-165.4	-161	0.77	-20.4
LuPO ₄	-263.9		-220	0.83	-5.2
YbPO ₄	-269.6		-252†		
* Ushakov e	t al. (2002).				

+ Calculation not done with Ln_3 pseudopotential in MGP.

FIGURE 1. Correlation between $\Delta E_{ox}^{f}(0)$ and the cube root of the computed volume of the RE₂O₃ phase for monozite and xenotime.

be compared against the 23 kJ/mol difference in $\Delta E_{ox}^{r}(0)$ for these phases; so it can be concluded that the DFT calculations overestimate the energetic differences between the two polymorphs.

FIGURE 2. Correlation between the difference of the measured heat of formation and the computed electronic energy $[\Delta H_{ox}^{f}(298.15) - \Delta E_{ox}^{f}(0)]$ and the cube root of the computed volume of the cubic RE₂O.

Figure 2 shows $\Delta H_{ox}^{f}(298.15) - \Delta E_{ox}^{f}(0)$ plotted again against the cube root of the volume of the cubic RE₂O₃ phase. The measured $\Delta H_{ox}^{f}(298.15)$ values lie fairly consistently about 40 kJ/mol lower than the calculated $\Delta E_{ox}^{f}(0)$, and exhibit no convincing trend with ionic radius. The average deviation would be increased to ~50 kJ/mol if o'-P₂O₅ were used instead of h-P₂O₅ as the P₂O₅ reference compound. The most negative deviations from the average (i.e., the REPO₄ phase is calculated to be thermodynamically less stable than average) occurs for GdPO₄ and TbPO₄. The most positive deviation is for CePO₄. Unlike GdPO₄, calculated structural properties of CePO₄ are anomalous. The predicted volume of CePO₄ is nearly 4.6% above X-ray measurements, in contrast to the 2-3% for the other REPO₄. The overestimation of the volume is 4.8% for the Ce₂O₃. Treatment of CePO₄ and Ce₂O₃ with PBE+U makes only a small correction (~3 kJ/mol) to the calculated $\Delta E_{ox}^{f}(0)$, so the effective RE 3 pseudopotentials are probably not the source of the error shown in Figure 2. The data in Figure 2 may suggest that the monazite REPO₄(m) phases lie on a different trend than the xenotime $REPO_4(x)$ phases.

Thermal corrections to $\Delta E_{ox}^{f}(0)$

Direct comparison of the calculated $\Delta E_{ox}^{t}(0)$ for the formation of the REPO₄ from oxides with experimental $\Delta H(298 \text{ K})$ requires, at a minimum, knowledge of the differential zero-point energies $\Delta ZPE = ZPE(LnPO_4) - 1/2[ZPE(P_2O_5) + ZPE(Ln_2O_3)]$ and the differential enthalpies $\Delta [C_P dT = \int \{C_P(LnPO_4) - 1/2[C_P(Ln_2O_3) + C_P(P_2O_5)]dT\}$ between $(P_2O_5+Ln_2O_3)$ and $LnPO_4$. These could, in principle, be computed from DFT for all phases, but would require a heavy investment of computational resources. Here, an empirical approach is taken to estimate the likely magnitude of the thermal contributions. There will also be Schottky-type contributions for some of the phases (Westrum 1985), but these cannot be responsible for the systematic differential between the measured and calculated enthalpies, as they should be close to zero for compounds with no crystal-field stabilization (Y, Sc, La, Gd).

The $\Delta \int C_P dT$ can be summed from low-temperature heat capacities of the RE₂O₃, P₂O₅, and REPO₄ phases. Low-temperature heat capacities for the RE₂O₃ phases (Goldstein et al. 1959; Justice and Westrum 1963; Weller and King 1963; Justice et al. 1969; Gavrichev et al. 1993; Gruber et al. 2002) are given in

Table 10. For the REPO₄ phases, low-temperature heat capacities have been measured for ScPO₄ (Gavrichev et al. 2010a), YPO₄ (Gavrichev et al. 2010b), LaPO₄ (Gavrichev et al. 2008), and LuPO₄ (Gavrichev et al. 2006). The low-temperature heat capacity of P₂O₅ has been measured by Andon et al. (1963) giving *H*(298.15) – *H*(0) = 16.98 kJ/mol; first-principles electronic structure calculations yield estimates of *H*(298.15)–*H*(0) = 16.37 kJ/mol (Rustad 2011). Taking typical values of ~20 kJ/mol for RE₂O₃, ~17 kJ/mol for REPO₄, and ~16 kJ/mol for P₂O₅, the thermal enthalpy correction to $\Delta E_{\rm ox}^{\rm c}(0)$ is close to zero (–1 kJ/mol), and, as expected, make negligible contribution to the systematic difference between $\Delta H_{\rm ox}^{\rm c}(298 \text{ K})$ and $\Delta E_{\rm ox}^{\rm c}(0)$.

Estimates for ZPEs can be made empirically from knowledge of the infrared and Raman vibrational spectra for each of the phases. Uncertainties related to the deconvolution of multicomponent peaks, knowledge of vibrational degeneracies, and anharmonic effects contribute to inaccuracies in these estimates.

TABLE 10. Enthalpy correction to standard temperature H(298.15) - H(0) for RE₂O₃ phases (kJ/mol)

	RE ₂ O ₃	REPO ₄				
Sc	13.845*	14.934**				
Υ	16.800†	15.944††				
La	19.842‡	17.440‡‡				
Ce	21.479‡					
Pr	22.734‡					
Nd	20.892‡					
Sm	21.008§					
Gd	18.510§					
Dy	21.025					
Ho	20.958					
Er	19.995					
Tm	20.887#					
Lu	17.539#	16.430§§				
* Weller and Kir	ng (1963).					
+ Gavrichev et a	al. (1993).					
‡ Gruber et al. (2002).					
§ Justice and W	estrum (1963).					
Westrum and	Justice (1963).					
# Justice et al. (1969).					
** Gavrichev et	al. (2010a).					
++ Gavrichev et	tt Gavrichev et al. (2010b).					
‡‡ Gavrichev et al. (2008).						
§§ Gavrichev et	al. (2006).					

A normal coordinate analysis has been carried for A-type (La-Pr-Nd)₂O₃ (Gopinath and Brown 1982). Infrared and Raman spectra have been measured for $LnPO_4$ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) (Silva et al. 2006). Infrared and Raman spectra have been obtained for $h-P_4O_{10}$ (Gilliam et al. 2003), however the ZPE for P_2O_5 (70.6 kJ/mol) is taken from a recent theoretical calculation of the vibrational spectrum of this phase (Rustad 2011) because of some revisions in the interpretation of the measured spectrum indicated by the calculations. The vibrational frequencies and ZPE estimates are given in Tables 11 and 12. Again, taking typical values, an estimate for \triangle ZPE is 58 kJ/mol – $\frac{1}{2}(21.5 - 70.6)$. This yields a +12 kJ/mol correction to the calculated $\Delta E_{0x}^{f}(0)$, in the opposite direction of the correction needed to bring the calculated $\Delta E_{ox}^{f}(0)$ in consonance with measured values of $\Delta H(298)$ K); in other words, the calculated enthalpies, which are already not exothermic enough, become ~12 kJ/mol less exothermic by accounting for the ZPE.

To check these estimates, first-principles calculations of the vibrational spectrum of YPO₄ and cubic Y_2O_3 were carried out using the CASTEP planewave-pseudopotential code (Clark et al. 2005), as implemented within Materials Studio of Accelrys, Inc. A planewave cutoff of 750 eV and norm-conserving pseudopotentials (Lin et al. 1993) were used in the calculations. The phonons were calculated with the linear-response method (Refson et al. 2006). For Y_2O_3 and YPO_4 the norm-conserving pseudopotentials give structures that compare well with the VASP calculations and

TABLE 12. Vibrational frequencies (cm^{-1}) with hv/2 contribution to

	zero-point energy (kJ/mol) for A-type Ln_2O_3 oxide phases*								
	La ₂	03	Pr	203	N	Nd ₂ O ₃			
Ea	413	4.9	415	5.0	434	5.2			
A _{1q}	400	2.4	404	2.4	422	2.5			
Eu	408	4.9	409	4.9	415	5.0			
A _{2a}	404	2.4	406	2.4	407	2.4			
Eu	243	2.9	264	3.2	232	2.8			
A _{2u}	256	1.5	258	1.5	223	1.3			
A_{1q}	191	1.1	189	1.1	190	1.1			
Eg	99	1.2	99	1.2	100	1.2			
		21.4†		21.7†		21.6†			
* Data taken from Gopinath and Brown (1982).									

† Total zero-point energy (Σhv_i/2).

TABLE 11. Vibrational frequencies (cm⁻¹) with hv/2 contribution to zero-point energy (kJ/mol) for monazite-type LnPO₄*

				, .				5, (.,					
LaF	PO ₄	Ce	PO ₄	PrP	O ₄	Nc	IPO ₄	Sm	nPO ₄	Euf	PO ₄	Go	IPO ₄	
90	0.5	88	0.5	90	0.5	89	0.5	88	0.5	87	0.5	87	0.5	
100	0.6	100	0.6	105	0.6	106	0.6	107	0.6	108	0.6	108	0.6	
151	0.9	152	0.9	153	0.9	154	0.9	155	0.9	156	0.9	158	0.9	
157	0.9	158	0.9	160	1.0	160	1.0	159	1.0	160	1.0	162	1.0	
170	1.0	172	1.0	176	1.1	175	1.0	177	1.1	175	1.0	178	1.1	
184	1.1	183	1.1	182	1.1	183	1.1	185	1.1	189	1.1	192	1.1	
219	1.3	219	1.3	225	1.3	228	1.4	231	1.4	234	1.4	236	1.4	
226	1.4	227	1.4	233	1.4	236	1.4	243	1.5	243	1.5	247	1.5	
258	1.5	254	1.5	260	1.6	264	1.6	265	1.6	265	1.6	268	1.6	
275	3.3	270	1.6	282	1.7	291	1.7	293	1.8	298	1.8	302	1.8	
396	2.4	396	2.4	299	1.8	398	2.4	404	2.4	404	2.4	406	2.4	
413	2.5	414	2.5	417	5.0	419	2.5	424	2.5	425	2.5	428	2.6	
466†	5.6	467	5.6	470	5.6	471	5.6	474	5.7	472	5.6	478	5.7	
620‡	11.1	618	11.1	623	11.2	625	11.2	629	11.3	631	11.3	634	11.4	
968§	5.8	970	5.8	975	5.8	977	5.8	983	5.9	990	5.9	988	5.9	
1054	18.9	1054	18.9	1058	19.0	1061	19.0	1065	19.1	1069	19.2	1072	19.2	
	58.8#		57.1#		59.6#		57.9#		58.3#		58.5#		58.8#	

* Data taken from Silva et al. (2006).

+ PO₄-ν₂ (multiplicity 2).

 PO_4-v_4 (multiplicity 3).

 $PO_4-\nu_1$ (multiplicity 1).

|| PO₄-ν₃ (multiplicity 3). # Total zero-point energy (Σhν_i/2). 795

TABLE 13. Thermodynamic properties obtained with CASTEP

	F	7PF	Сv	H(298.15) -	S(298.15)
	-	(kJ/mol)	[J/(mol·K)]	H(0) (kJ/mol)	[J/(mol·K)]
YPO₄ calc (this work)	–1957.54 eV	53.14	96.84 (<i>C_v</i>)	15.001	87.28
exp*		-	99.27 (C _P)	15.994	93.86
Y ₂ O ₃ calc (this work)	–1393.97 eV	33.45	93.66	14.760	85.92
exp†		-	103.4	16.800	98.96
$h-P_2O_5$ calc $\Delta E_{ox}^f(0)$ -	–2516.15 eV -239.28 kJ/mol	70.65	103.1	16.370	106.45
Correction to <i>H</i> calc		1.09		-0.56	
exp§ -	-282.6 kJ/mol			-0.59	
* Gavrichev e	et al. (2010).				
+ Gavrichev e	et al. (1993).				
‡ Rustad (201	11).				
& I Ishakov et	al (2002)				

TABLE 14.	Computed	vibrational	modes at o	$q = (0,0,0)$ for Y_2O_3
-----------	----------	-------------	------------	----------------------------

v (cm ⁻¹)	g*	IR Int†	R‡	RM§
114.4	1	0.00	Ν	N
122.0	3	0.04	Y	N
132.1	3	0.00	Ν	Y
135.7	2	0.00	N	N
141.1	3	0.00	Ν	Y
159.0	3	0.01	Y	N
166.6	1	0.00	N	Y
177.2	3	0.23	Y	N
187.5	3	0.17	Y	N
193.0	3	0.00	Ν	Y
207.1	2	0.00	Ν	Y
207.9	3	0.06	Y	N
241.7	1	0.00	Ν	N
253.2	3	0.00	Ν	Y
257.3	3	0.00	Ν	Y
260.7	2	0.00	Ν	N
261.6	3	1.08	Y	N
320.2	3	0.00	Y	N
378.6	3	88.12	Y	N
385.1	3	0.00	Ν	Y
393.5	3	2.04	Y	N
394.9	1	0.00	Ν	N
397.1	2	0.00	Ν	Y
398.5	3	0.00	Ν	Y
412.5	3	51.24	Y	Ν
419.7	1	0.00	Ν	Y
420.6	2	0.00	Ν	Ν
425.5	3	1.70	Y	N
435.1	3	0.00	Ν	Y
448.6	3	100.11	Y	N
452.3	3	0.00	Ν	Y
463.4	2	0.00	Ν	Y
470.6	2	0.00	Ν	Ν
471.6	3	0.00	Ν	Y
476.5	3	3.71	Y	Ν
506.0	1	0.00	Ν	Y
514.7	3	0.00	Ν	Y
518.5	1	0.00	Ν	N
551.8	3	4.12	Y	N
556.5	3	0.00	Ν	Y
580.4	1	0.00	Ν	N
581.4	3	0.02	Y	N
593.1	3	0.00	Ν	Y
624.0	3	18.35	Y	N
633.5	1	0.00	Ν	Y
635.5	2	0.00	Ν	Y
653.4	2	0.00	Ν	N
663.8	3	0.00	N	Y

* Degeneracy. † Infrared intensity (Debye²/Å²/atomic mass unit).

§ Raman active.

experiment (Y₂O₃: a = 10.594 Å; YPO₄ a = 6.957 Å, c = 5.964 Å). Table 13 gives the thermodynamic properties of Y₂O₃, YPO₄, and P₂O₅. The calculated $\Delta E_{ox}^{i}(0)$ is, remarkably, within 1 kJ/mol

of the value calculated with VASP. The calculated co rrections to obtain $\Delta H_{\alpha x}^{f}(298.15)$ from $\Delta E_{\alpha x}^{f}(0)$ from both the zero-point energy and the heat capacity are small, on the order of 1 kJ/mol or less. The main discrepancy with the empirical estimate is the calculated ZPE of the oxide. The calculated value for Y_2O_3 (33.5 kJ/mol) is higher than the value estimated from a force field parameterized against the measured vibrational spectra of A-type (La, Pr, Nd)₂O₃ given in Gopinath and Brown (1982). These are, of course, different structures. Calculated frequencies at q = (0,0,0) are given for YPO₄ and Y₂O₃ in Tables 14 and 15, and the phonon density of states for YPO₄(x) and C-Y₂O₃ are given in Figures 3 and 4. For $YPO_4(x)$, there is good agreement between the vibrational frequencies and the Raman spectrum for xenotime reported in (http://www.ens-lyon.fr/LST/Raman). For Y2O3, there appear to be contributions at significantly higher frequencies than indicated in the measured spectrum (Repelin et al. 1995). It seems reasonable to conclude that the ΔZPE correction probably lies somewhere between 0 and +12 kJ/mol.

FIGURE 3. Phonon density of states computed for YPO₄-xenotime.

TABLE 15. Computed vibrational modes at q = (0,0,0) for YPO₄

v (cm ⁻¹)	g*	IR Int†	R‡	RM§
154.2	1	0.0	N	N
166.4	2	0.0	Ν	Y
190.3	1	0.0	Ν	Y
236.6	2	0.0	Ν	Y
237.7	2	10.1	Y	N
244.0	1	0.0	Ν	N
324.6	2	0.0	Ν	Y
339.2	1	0.0	Ν	Y
351.9	1	29.9	Y	N
352.9	1	0.0	Ν	Y
381.8	2	2.3	Y	N
418.0	1	0.0	N	N
518.9	1	0.0	Ν	Y
526.3	2	4.0	Y	N
577.5	1	0.0	N	N
584.8	2	0.0	Ν	Y
647.8	1	11.4	Y	N
669.2	1	0.0	N	Y
954.6	2	48.2	Y	N
957.6	1	0.0	N	N
971.7	1	0.0	N	Y
995.8	2	0.0	Ν	Y
1023.3	1	0.0	Ν	Y
1024.8	1	53.4	Y	N

* Degeneracy.

† Infrared intensity (Debye²/Å²/atomic mass unit).

[‡] Infrared active.

[‡] Infrared active. § Raman active.

FIGURE 4. Phonon density of states computed for cubic Y₂O₃.

FIGURE 5. Electrostatic lattice energies *E* as a function of ionic radius for RE oxide and phosphate phases. The lattice energy of h-P₂O₅ has been added to the oxides and the sum multiplied by $\frac{1}{2}$.

The physical origin of energetic trends

The overall trend of increasing ΔH_{ox}^{f} with ionic radius observed by Ushakov et al. (2002) and reproduced here using electronic structure calculations, is easy to understand. The electrostatic energies of the oxides and phosphate phases were computed in the ionic model assuming formal charges of +3 for the REE, -2 for oxygen, and +5 for phosphorous. Figure 5 shows the relationship between the electrostatic energy and the ionic radius for the oxide and phosphate phases. To make the comparison easier, the lattice energy of $h-P_2O_5$ has been added to the lattice energy of the oxide phases and the sum is multiplied by 1/2. The difference indicated in the figure is therefore the electrostatic energy of formation (this quantity is highly exothermic because it neglects short-range cation-anion repulsion). The reason for the observed trend is simply that, due to the localized charge on the oxide anions relative to the phosphate anions, the lattice energies of the oxide phases are a stronger function of ionic radius than the phosphates (compare the slopes of 0.82/2eV/pm for the oxides and 0.34 eV/pm for the phosphates). In other words, the lattice energy becomes more negative for both phases as ionic radius decreases, but does so more rapidly for oxide phase than the phosphate phase because the anionic charge is more localized in the oxide. This type of trend governs the

FIGURE 6. Correlation between measured enthalpies of formation from the oxides and ionic radius for carbonate (MCO₃), orthosilicate (M₂SiO₄), and sulfate(MSO₄) compounds with divalent anions. Experimental data are taken from the Materials Genome Reaction Calculator database (http://www.materialsproject.org).

enthalpies of formation of other oxyacid compounds as well, such as sulfates, carbonates, and silicates, as shown in Figure 6, with the measured ΔH_{ox}^{f} taken from the Materials Genome Project experimental database (http://www.materialsproject.org).

Assessment of systematic error

An obvious approach to improving the accuracy of the electronic structure calculations is to account for the systematic error in a predictive manner. For example, it may be possible to scale the calculated ΔE_{ox}^{i} by some constant factor to estimate the

measured ΔH_{ox}^{f} . This factor would likely be material dependent; for example, there might be a scaling factor that will work for oxides, and a different one for sulfides. Additional accuracy may be obtained by introducing different scaling factors for different types of oxides (e.g., oxides sensu stricto, silicates, carbonates, sulfates), for example. Recent efforts in the construction of virtual databases of electronic structure calculations by the Materials Genome Project (MGP) (Jain et al. 2011) allow easy exploration of such questions. Table 9 gives the results of the Reaction Calculator program in MGP for the ΔE_{ox}^{f} of the RE orthophosphates calculated here. The details of these calculations are described on the MGP web site and Jain et al. (2011), but are much the same methods as used in this study. In fact, the RE phosphate ΔE_{ox}^{f} from MGP are very close to the calculations done in this study. Table 16 give enthalpies of formation from the oxides for alkaline earth carbonates, silicates, and sulfates calculated with the MGP. Omitting the MgCO₃, for which the MGP prediction seems anomalously low, an average scaling factor of 0.85 is obtained for $\Delta E_{\text{ox calculated}}^{\text{f}} \Delta H_{\text{ox measured}}^{\text{f}}$. For the RE phosphates in Table 9, applying such a scaling factor to the MGP values (or the ones calculated here) gives nearly chemical accuracy (±4 kJ/ mol) for most of the compounds. In the MGP database, CePO₄, GdPO₄, are not computed with the Ln 3 pseudopotentials. These compounds are also problematic for the calculations presented here, which use the Ln 3 pseudopotentials. In addition to these, SmPO₄ and ScPO₄ also give large errors, outside the bounds of chemical accuracy.

CONCLUDING REMARKS

Density functional electronic structure calculations have been carried out on Sc, Y, and RE orthophosphates and oxides, and h- and o'-P₂O₅ polymorphs to calculate the electronic enthalpies of formation $\Delta E_{ox}^{f}(0)$. Calculated enthalpies of formation are systematically less exothermic than measured $\Delta H_{\alpha x}^{f}(298.15)$. H(298.15) - H(0) corrections are estimated to be less than 1 kJ/ mol. Empirical estimates for ZPE of orthophosphate and oxide phases are nearly independent of atomic number, and give a 0 to +12 kJ/mol correction to the $\Delta E_{0x}^{f}(0)$ (i.e., in the wrong direction; the reaction energies become less exothermic when ZPE is included). Ab initio calculation of the zero-point correction for formation of YPO₄, based on the computed vibrational spectrum of YPO₄ and Y₂O₃, gives Δ ZPE and Δ [H(298.15) – H(0)] close to zero. Thus the origin of the discrepancy between the measured values of $\Delta H_{ox}^{f}(298.15)$ and calculated values of $\Delta E_{ox}^{f}(0)$ appears to be electronic in origin. Because similar errors are found for the alkaline earth carbonates, silicates, and sulfates, the errors do not result from the Ln 3 pseudopotentials or from errors in the calculated energy of the P2O5 reference phase. Because the PBE functional is likely to underestimate the charge localization, it seems further unlikely that using hybrid functionals will fix the problem; they are likely to give more "ionic" electronic structures which should favor the oxides over the phosphates, making the enthalpies of formation even less exothermic. These observations, taken together, would suggest that improvement in the absolute value of the calculated $\Delta E_{ox}^{f}(0)$ could require going beyond density functional theory, e.g., quantum Monte Carlo (see Kolorenc and Mitas 2011).

Nevertheless, near-chemical accuracy (±10 kJ/mol) for most

TABLE 16. Energies calculated from the MGP Reaction Calculator vs. measured enthalpies taken from MGP database, and the ratios of these numbers

	$\Delta E_{ox}^{f}(0) \text{ kJ/mol}$	ΔH_{ox}^{f} kJ/mol	$\Delta E_{ox}^{f}(0)/\Delta H_{ox}^{f}$
MgCO ₃	-81	-117	0.69
CaCO ₃	-148	-178	0.83
SrCO ₃	-198	-235	0.84
BaCO ₃	-238	-276	0.86
MgSO₄	-196	-222	0.88
CaSO₄	-299	-361	0.83
SrSO₄	-351	-423	0.83
BaSO ₄	-414	-495	0.84
Mg₂SiO₄	-53	-63	0.84
Ca₂SiO₄	-127	-147	0.86
Sr ₂ SiO ₄	-179	-208	0.86
Ba_2SiO_4	-236	-265	0.89

of the compounds can be obtained by dividing the calculated $\Delta E_{ox}^r(0)$ by 0.85; a value taken from the average scaling factor between measured ΔH_{ox}^r and ΔE_{ox}^r calculated from the Materials Genome Project database on alkaline earth carbonates, silicates, and sulfates, obtained with methods similar to those used here.

Finally, a qualitative understanding of the observed correlation between atomic number and heat of formation results from the lanthanide contraction and the localized charge on the oxide anion relative to the phosphate anion and can be reproduced from the simplest ionic model, without input from any deep aspects of the quantum mechanics.

REFERENCES CITED

- Adelstein, N., Mun, B.S., Ray, H.L., Ross, P.N. Jr., Neaton, J.B., and De Jonghe, L.C. (2011) Structure and electronic properties of cerium orthophosphate: Theory and experiment. Physical Review B, 83, 205104.
- Andon, R.J.L., Counsell, J.F., McKerrell, H., and Martin, J.F. (1963) Thermodynamic properties of phosphorous compounds. 1. Entropy of phosphorous pentoxide. Transactions of the Faraday Society, 59, 2702–2705.
- Baldinozzi, G., Berar, J., and Calvarin, G. (1998) Rietveld refinement of two-phase Zr-doped Y₂O₃. Materials Science Forum, 278, 680–685.
- Bartos, A., Lieb, K.P., Uhrmacher, M., and Wiarda, D. (1993) Refinement of atomic positions in bixbyite oxides using perturbed angular-correlation spectroscopy. Acta Crystallographica, B49, 165–169.
- Bloechl, P.E. (1994) Projector augmented-wave method. Physical Review B, 50, 17953.
- Boucherle, J.X. and Schweizer, J. (1975) Refinement of Nd₂O₃ structure and determination of neutron-scattering length of neodymium. Acta Crystallographica, B31, 2745–2746.
- Boulesteix, C., Pardo, B., Caro, P.E., Gasgnier, M., and la Blanchetais, C.H. (1971) Etude de couches minces de sesquioxyde de samarium type B par microscopie et diffraction électroniques. Acta Crystallographica, B27, 216–219.
- Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C. (2005) First-principles methods using CASTEP. Zeitschrift für Kristallographie, 220, 567–570.
- Cruickshank, D.W.J. (1964) Refinements of structures containing bonds between Si, P, S, or Cl+O or N V. P₄O₁₀. Acta Crystallographica, 17, 677–679.
- Da Silva, J.L. (2007) Stability of the Ce₂O₃ phases: a DFT+U investigation. Physical Review B, 76, 193108.
- Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Szotek, Y., Temmerman, W.M., and Sutton, A.P. (1998) Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA+U, SIC-LSDA and EELS study of UO₂ and NiO. Physica status solidi (a), 166, 429–443.
- Fabris, S., de Gironcoli, S., Baroni, S., Vicario, G., and Balducci, G. (2005) Taming multiple valency with density functionals: A case of defective ceria. Physical Review B, 71, 041102.
- Fert, A. (1962) Structure de quelques oxydes de terres rares. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 85, 267–270.
- Gavrichev, K.S., Gorbunov, V.E., Golushina, L.N., Nikiforova, G.E., Totrova, G.A., and Shaplygin, I.S. (1993) Calorimetry and thermodynamic properties of Y₂O₃ in 14–300 K temperature range. Zhurnal Fizichyeskoi Khimi, 67, 1731–1733 (in Russian).
- Gavrichev, K.S., Smirnova, N.N., Gurevich, V.M., Danilov, V.P., Tyurin, A.V., Ryu-

min, M.A., and Komissarova, L.N. (2006) Heat capacity and thermodynamic functions of $LuPO_4$ in the range 0–320 K. Thermochimica Acta, 448, 63–65.

- Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., Gurevich, V.M., and Komissarova, L.N. (2008) Refined heat capacity of LaPO₄ in the temperature range 0–1600 K. Thermochimica Acta, 474, 47–51.
- Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., Gurevich, V.M., and Komissarova, L.N. (2010a) Heat capacity and thermodynamic functions of pretulite ScPO₄(c) at 0–1600 K. Geochemistry International, 48, 390–397.
- Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., Gurevich, V.M., and Komissarova, L.N. (2010b) Heat capacity and thermodynamic functions of xenotime YPO₄(c) at 0–1600 K. Geochemistry International, 48, 932–939.
- Gilliam, S.J., Kirby, S.J., Merrow, C.N., Zeroka, D., Banerjee, A., and Jensen, J.O. (2003) Raman spectroscopy of rhombohedral P₄O₁₀. Journal of Physical Chemistry B, 107, 2892–2896.
- Goldstein, H.W., Neilson, E.F., Walsh, P.N., and White, D. (1959) The heat capacities of yttrium oxide (Y₂O₃), lanthanum oxide (La₂O₃), and neodymium oxide (Nd₂O₃) from 16 to 300 degrees K. Journal of Physical Chemistry, 63, 1445–1449.
- Gopinath, C.R. and Brown, I.D. (1982) Normal coordinate analysis of the Raman and infrared vibrations of the alpha phases of La₂O₃, Pr₂O₃, Nd₂O₃, La₂O₂S, YB₂O₂S. Journal of Raman Spectroscopy, 12, 278–280.
- Greenwood, N.N. and Earnshaw A. (1985) Chemistry of the Elements. Butterworth Heinemann, Oxford.
- Greis, O., Ziel, R., Breidenstein, B., Haase, A., and Petzel, T. (1994) The crystalstructure of the low-temperature A-type modification of Pr₂O₃ from X-ray powder and electron single crystal diffraction. Journal of Alloys and Compounds, 216, 255–258.
- Gruber, J.B., Justice, B.H., Westrum, E.F., and Zandi, B. (2002) Revisiting the thermophysical properties of the A-type hexagonal lanthanide sesquioxides between temperatures of 5 K and 1000 K. Journal of Chemical Thermodynamics, 34, 457–473.
- Hase, W. (1963) Neutronographische bestimmung der kristallstrukturparameter von Dy₂O₃, Tm₂O₃, und alpha-Mn₂O₃. Physica Status Solidi, 3, 446–449.
- Hirosaki, N., Ogata, S., and Kocer, C.J. (2003) Ab initio calculation of the crystal structure of the lanthanide Ln₂O₃ sesquioxides. Alloys and Compounds, 351, 31–34.
- Jain, A., Hautier, G., Moore, C.J., Ong, S.P., Fischer, C.C., Mueller, T., Persson, K.A., and Ceder, G. (2011) A high-throughput infrastructure for density functional theory calculations. Computational Materials Science, 50, 2295–2310.
- Justice, B.H. and Westrum, E.F. (1963) Thermophysical properties of the lanthanide oxides. 2. Heat capacities, thermodynamic properties and some energy levels of samarium(III), gadolinium(III), and ytterbium(III) oxides from 10 to 350 degrees K. Journal of Physical Chemistry, 67, 345–351.
- Justice, B.H., Westrum, E.F., Chang, E., and Radebaug, R. (1969) Thermophysical properties of the lanthanide oxides. 4. Heat capacities and thermodynamic of thulium(III) and lutetium(III) oxides. Electronic energy levels of several lanthanide (III) ions. Journal of Physical Chemistry, 73, 333–340.
- Knop, O. and Hartley, J.M. (1968) Refinement of the crystal structure of scandium oxide. Canadian Journal of Chemistry, 46, 1446–1450.
- Koehler, W.C. and Wollan, E.O. (1953) Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. Acta Crystallographica, 6, 741–742.
- Kolorenc, J. and Mitas, L. (2011) Applications of quantum Monte Carlo methods in condensed systems. Reports on Progress in Physics, 74, 1–28.
- Kresse, G. and Furthmuller, J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15–50.
- Kresse, G. and Hafner, J. (1993) Ab initio molecular dynamics for liquid-metals Physical Review B, 47, 558–561.
- Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758–1775.
- Kuemmerle, E.A. and Heger, G.J. (1999) The structures of C-Ce₂O₃+delta, Ce₇O₁₂,

and Ce11O20. Journal of Solid State Chemistry, 147, 485-500.

- Lin, J.S., Qteish, A., Payne, M.C., and Heine, V. (1993) Optimized and transferable nonlocal separable ab initio pseudopotentials. Physical Review B, 47, 4174–4180.
- Loschen, C., Carrasco, J., Neyman, K.M., and Illas, F. (2007) First-principles LDA plus U and GGA plus U study of cerium oxides: Dependence on the effective U parameter. Physical Review B, 75, 035115.
- Milligan, W.O., Mullica, D.F., Beall, G.W., and Boatner, L.A. (1982) Structural investigations of YPO₄, ScPO₄, and LuPO₄. Inorganica Chimica Acta, 60, 39–43.
- Ni, Y., Hughes, J.M., and Mariano, A.N. (1995) Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80, 21–26.
- Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., and Segre, U. (2006) A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. Journal of Physical Chemistry B, 110, 11780–11795.
- Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.
- Refson, K., Clark, S.J., and Tulip, P.R. (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Physical Review B, 73, 155114.
- Repelin, Y., Proust, C., Husson, E., and Beny, J.M. (1995) Vibrational spectroscopy of the C-form of yttrium sesquioxide. Journal of Solid State Chemistry, 118, 163–169.
- Rustad, J.R. (2011) Vibrational spectrum and low-temperature heat capacity of rhombohedral P₄O₁₀. arXiv:1106.5824v1[cond-mat.mtrl-sci].
- Saiki, A., Ishizawa, N., Mizutani, N., and Kato, M. (1985) Structural change of rare earth sesquioxides Yb₂O₃ and Er₂O₃ as a function of temperature. Journal of the Ceramic Society of Japan, 93, 649–654.
- Schiller, G. Die Kristallstrukturen von Ce₂O₃ (1985) (A-Form), LiCeO₂ und CeF₃—Ein Beitrag zur Kristallchemie des dreiwertigen Cers. Dissertation Universitaet Karlsruhe.
- Silva, E.N., Ayala, A.P., Guedes, I., Paschoal, C.W.A., Moriera, R.L., Loong, C.-K., and Boatner, L. (2006) Vibrational spectra of monazite-type rare-earth orthophosphates. Optical Materials, 29, 224–230.
- Stachel, D., Svoboda, I., and Fuess, H. (1995) Phosphorous pentoxide at 233 K. Acta Crystallographica, C51, 1049–1050.
- Ushakov, S.V., Helean, K.B., and Navrotsky, A. (2002) Thermochemistry of rareearth orthophosphates. Journal of Materials Research, 16, 2623–2633.
- Weller, W.W. and King, E.G. (1963) Report Invest No. 6245, p. 1–6. U.S. Bureau of Mines, Washington, D.C.
- Westrum, E.F. and Justice, B.H. (1963) Thermophysical properties of the lanthanide oxides. 2. Heat capacities, thermodynamic properties and some energy levels of dysprosium(III), holmium(III), and erbium(III) oxides. Journal of Physical Chemistry, 67, 659–665.
- Westrum, E.F. (1985) Schottky contributions in chemical thermodynamics. Journal of Thermal Analysis and Calorimetry, 30, 1209–1215.
- Wu, B., Zinkevich, M., Aldinger, F., Wen, D., and Chen, L. (2007) Ab initio study on the structure and phase transition of A- and B-type rare-earth sesquioxides Ln₂O₃(Ln=La-Lu, Y, and Sc) based on density functional theory. Journal of Solid State Chemistry, 180, 3280–3287.
- Zhang, F.X., Lang, M., Wang, J.W., Becker, U., and Ewing, R.C. (2008) Structural phase transitions of cubic Gd₂O₃ at high pressures. Physical Review B, 78, 064114.

MANUSCRIPT RECEIVED JULY 12, 2011 MANUSCRIPT ACCEPTED JANUARY 6, 2012 MANUSCRIPT HANDLED BY BARRY BICKMORE