Panguite, (Ti⁴⁺,Sc,Al,Mg,Zr,Ca)_{1.8}O₃, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD

CHI MA,^{1,*} OLIVER TSCHAUNER,^{1,2} JOHN R. BECKETT,¹ GEORGE R. ROSSMAN,¹ AND WENJUN LIU³

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. ²High Pressure Science and Engineering Center and Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, U.S.A. ³Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

ABSTRACT

Panguite (IMA 2010-057), (Ti⁴⁺,Sc,Al,Mg,Zr,Ca)_{1.8}O₃, is a new titania, occurring as fine-grained crystals with Ti-rich davisite in an ultra-refractory inclusion within an amoeboid olivine inclusion from the Allende CV3 carbonaceous chondrite. The phase was characterized by SEM, EBSD, synchrotron micro-diffraction, micro-Raman spectroscopy, and EPMA. The mean chemical composition of the type panguite is (wt%) TiO₂ 47.97, ZrO₂ 14.61, Sc₂O₃ 10.67, Al₂O₃ 7.58, MgO 5.54, Y₂O₃ 5.38, CaO 3.34, SiO₂ 1.89, FeO 1.81, V₂O₃ 0.95, Cr₂O₃ 0.54, HfO₂ 0.28, sum 100.56 with a corresponding empirical formula calculated on the basis of 3 O atoms of [(Ti_{0.79}Zr_{0.16}Si_{0.04})⁴⁺_{2.0.99}(Sc_{0.20}Al_{0.20}Y_{0.06}V_{0.02}Cr_{0.01})³⁺_{2.0.49}(Mg_{0.18}Ca_{0.08}Fe_{0.03})²⁺_{2.0.29}]_{2.1.77}O₃. Synchrotron micro-Laue diffraction (i.e., an energy scan by a high-flux X-ray monochromatic beam and white beam diffraction) on one type domain at sub-micrometer resolution revealed that panguite is an orthorhombic mineral in space group *Pbca*. The structure is a subgroup of the *Ia3* bixbyite-type. The cell parameters are *a* = 9.781(1), *b* = 9.778(2), and *c* = 9.815(1) Å, yielding *V* = 938.7(1) Å³, *Z* = 16, and a calculated density of 3.746 g/cm³. Panguite is not only a new mineral, but also a new titania material, likely formed by condensation. It is one of the oldest minerals in the solar system.

Keywords: Panguite, (Ti⁴⁺,Sc,Al,Mg,Zr,Ca)_{1.8}O₃, new ultra-refractory mineral, new titania, Allende meteorite, CV3 carbonaceous chondrite, synchrotron micro-diffraction, EBSD