Aluminum ordering and clustering in Al-rich synthetic phlogopite: {¹H} → ²⁹Si CPMAS HETCOR spectroscopy and atomistic calculations

RAMONA LANGNER,¹ MICHAEL FECHTELKORD,^{1,*} ALBERTO GARCÍA,² ERIKA J. PALIN,³ AND JAVIER LÓPEZ-SOLANO^{4,†}

¹Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany ²Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain ³Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, U.K. ⁴Departmento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080 Bilbao, Spain

ABSTRACT

The cationic ordering in the octahedral and tetrahedral sheets of Al-rich synthetic phlogopites with composition K(Mg_{3-x}Al_x)[Al_{1+x}Si_{3-x}O₁₀](OH)₂ (0.0 < *x* < 1.0) has been investigated using a combined approach of Monte Carlo simulations based on the "*J* formalism" (Bosenick et al. 2001; Warren et al. 2001) and ¹H, ²⁹Si MAS and {¹H} \rightarrow ²⁹Si CPMAS/HETCOR solid-state NMR spectroscopic experiments. Our results are compatible with the well-established Loewenstein's rule of Al-Al avoidance in the tetrahedral sheets, but the Si/^{IV}Al and Mg/^{VI}Al distributions show a tendency to segregation of the excess Al atoms, and we observe a preference for ^{VI}Al and ^{IV}Al to occupy directly neighbored octahedral and tetrahedral sites. As a result the structure is separated into clusters of original phlogopite composition {K(Mg₃)[AlSi₃O₁₀](OH)₂} and clusters of "eastonite" composition {K(Mg₂Al)[Al₂Si₂O₁₀] (OH)₂} that encompass a whole T-O-T layer package, although Al is solved in the phlogopite structure homogeneously on a macroscopic level.

Keywords: HETCOR CPMAS NMR, phlogopite, Monte Carlo simulations, *J* formalism, totalenergy calculations, GULP, SIESTA