American Mineralogist, Volume 96, pages 1530-1536, 2011

Elasticity and anisotropy of Fe₃C at high pressures

MAINAK MOOKHERJEE*

Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth D95440, Germany

ABSTRACT

Using static electronic structure calculations, we determine the equation of state, the full elastic constant tensor and the sound wave velocities of cementite (Fe₃C) at pressures up to 410 GPa. Fe₃C is ferromagnetic (*fm*) at ambient pressures. Upon compression, the magnetic moment of the Fe atoms are gradually lost and, at around ~62 GPa, Fe₃C becomes non-magnetic (*nm*). We find that the pressure-volume results for the Fe₃C (*fm*) phase are well represented by a Vinet equation of state with $K_0^{fm} = 183$ GPa, $K_0 = 5.9$, and $V_0^{fm} = 151.6$ Å³ and that of the Fe₃C (*nm*) phase are well represented by a Vinet equation of state with $K_0^{mm} = 297$ GPa, $K_0' = 4.9$, and $V_0^{mm} = 143.2$ Å³. A third-order Birch-Murnaghan equation of state formulation for the Fe₃C (*nm*) phase yields similar parameters with $K_0^{mm} = 304$ GPa, $K_0 = 4.5$, and $V_0^{mm} = 143.3$ Å³. At pressures relevant to the Earth's inner core, the full elastic constant tensor of Fe₃C (*nm*) reveals significant P-wave anisotropy (~10%). A crystal preferred orientation with the [110] directions of Fe₃C aligned along the pole axis would be required to explain the inner core anisotropy. Comparing, pure *hcp* Fe and iron carbides with varying stoichiometry, we find that the shear wave velocity decreases linearly with the increasing C content.

Keywords: Fe₃C, magnetic collapse, elasticity, anisotropy, Earth's inner core