The development of shape- and crystallographic-preferred orientation in CaPtO₃ post-perovskite deformed in pure shear

RICHARD MCCORMACK,¹ DAVID P. DOBSON,^{1,*} NICOLAS P. WALTE,² NOBUYOSHI MIYAJIMA,² TAKASHI TANIGUCHI,³ AND IAN G. WOOD¹

¹Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K. ²Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ³National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

ABSTRACT

Knowledge of the deformation mechanism of post-perovskite is important for interpreting observed seismic anisotropy in terms of mantle flow. Experiments on post-perovskite MgSiO₃ and the low-pressure analog material CaIrO₃ yield different textures, leaving the interpretation of the observed seismic signatures unclear. Here we present results of deformation experiments on CaPtO₃ post-perovskite that may be a better analog to MgSiO₃. Post-perovskite CaPtO₃ deforms by glide of [100] dislocations on the (010) plane, consistent with previous experimental results on CaIrO₃. In addition, samples containing a weak minority phase also display shape-preferred orientation with grains elongated in the crystallographic *a*-direction forming a planar fabric perpendicular to the compression direction. This shape-preferred orientation strengthens the observed crystallographic-preferred orientation and results in a rapid development of texture during deformation. This observation supports the recent suggestion that the D" reflector might be due to a rapid generation of texture in post-perovskite. Furthermore, the role of shape-preferred orientation in generating seismic anisotropy in multi-phase assemblages should be considered for the D" assemblage.

Keywords: CaPtO₃, post-perovskite, deformation mechanism, shape-preferred orientation, crystallographic-preferred orientation, seismic anisotropy