Krotite, CaAl₂O₄, a new refractory mineral from the NWA 1934 meteorite

CHI MA,^{1,*} ANTHONY R. KAMPF,² HAROLD C. CONNOLLY JR.,^{3,4,5} JOHN R. BECKETT,¹ GEORGE R. ROSSMAN,¹ STUART A. SWEENEY SMITH,^{4,6} AND DEVIN L. SCHRADER⁵

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
²Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, California 90007, U.S.A.
³Department of Physical Sciences, Kingsborough Community College of CUNY, Brooklyn, New York 11235 and Earth and Environmental Sciences, The Graduate Center of CUNY, New York, New York 10024, U.S.A.
⁴Department of Earth and Planetary Sciences, American Museum of Natural History, New York 10024, U.S.A.
⁵Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, U.S.A.

⁶Department of Geology, Carleton College, Northfield, Minnesota 55057, U.S.A.

ABSTRACT

Krotite, CaAl₂O₄, occurs as the dominant phase in an unusual Ca-,Al-rich refractory inclusion from the NWA 1934 CV3 carbonaceous chondrite. Krotite occupies the central and mantle portions of the inclusion along with minor perovskite, gehlenite, hercynite, and Cl-bearing mayenite, and trace hexamolybdenum. A layered rim surrounds the krotite-bearing regions, consisting from inside to outside of grossite, mixed hibonite, and spinel, then gehlenite with an outermost layer composed of Al-rich diopside. Krotite was identified by XRD, SEM-EBSD, micro-Raman, and electron microprobe. The mean chemical composition determined by electron microprobe analysis of krotite is (wt%) Al₂O₃ 63.50, CaO 35.73, sum 99.23, with an empirical formula calculated on the basis of 4 O atoms of Ca_{1.02}Al_{1.99}O₄. Single-crystal XRD reveals that krotite is monoclinic, $P2_1/n$; a = 8.6996(3), b =8.0994(3), c = 15.217(1) Å, $\beta = 90.188(6)$, and Z = 12. It has a stuffed tridymite structure, which was refined from single-crystal data to $R_1 = 0.0161$ for $1014 F_0 > 4\sigma F$ reflections. Krotite is colorless and transparent with a vitreous luster and white streak. Mohs hardness is $\sim 6\frac{1}{2}$. The mineral is brittle, with a conchoidal fracture. The calculated density is 2.94 g/cm³. Krotite is biaxial (-), $\alpha = 1.608(2)$, $\beta =$ 1.629(2), $\gamma = 1.635(2)$ (white light), $2V_{\text{meas}} = 54.4(5)^\circ$, and $2V_{\text{calc}} = 55.6^\circ$. No dispersion was observed. The optical orientation is $X = \mathbf{b}$; $Y \approx \mathbf{a}$; $Z \approx \mathbf{c}$. Pleochroism is colorless to very pale gray, X > Y = Z. Krotite is a low-pressure CaAl₂O₄ mineral, likely formed by condensation or crystallization from a melt in the solar nebula. This is the first reported occurrence of krotite in nature and it is one of the earliest minerals formed in the solar system.

Keywords: Krotite, CaAl₂O₄, new mineral, refractory inclusion, NWA 1934 meteorite, CV3 carbonaceous chondrite, XRD, EBSD