Mechanisms of Cr and H incorporation in stishovite determined by single-crystal EPR spectroscopy and DFT calculations

YUANMING PAN,^{1,*} RUDOLF I MASHKOVTSEV,^{1,2} DAN HUANG,¹ MAO MAO,¹ AND ANTON SHATSKIY^{2,3}

¹Department of Geological Sciences, University of Saskatchewan, Saskatchewan S7N 5E2, Canada

²V.S. Sobolev Institute of Mineralogy and Petrology, Russian Academy of Sciences, Novosibirsk 630090, Russia ³Department of Earth and Planetary Material Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

ABSTRACT

Synthetic stishovite before and after electron- and γ -ray irradiation has been investigated by singlecrystal electron paramagnetic resonance (EPR) spectroscopy for the first time. Room-temperature single-crystal EPR spectra of as-is stishovite reveal two high-spin (S = 3/2) Cr³⁺ centers: one with D_{2h} symmetry and another of triclinic symmetry. Quantitatively determined spin Hamiltonian parameters, including matrices g, D, and A(³³Cr) and high-spin Zeeman term BS³, suggest that the D_{2h} center represents a substitutional Cr^{3+} ion at the Si site without an immediate charge compensator. The triclinic center, which is characterized by a well-resolved ¹H superhyperfine structure, also arises from a substitutional Cr^{3+} ion at the Si site but has an H⁺ charge compensator bonded to one of the four equatorial oxygen atoms. The magnitude and orientation of the ¹H superhyperfine structure yield the location of the H atom at (0.46, 0.12, 0). These structural models for Cr and H in stishovite also have been corroborated by periodic density functional theory (DFT) calculations using the Vienna ab initio simulation package (VASP), with $2 \times 2 \times 4$ supercells, plane-wave basis sets and the projector augmented wave (PAW) potentials. In addition, 85 K EPR spectra of irradiated stishovite show that the two Cr^{3+} centers are both converted to an $S = 1/2 Cr^{5+}$ center characterized by two ²⁹Si superhyperfine structures arising from interactions with two nearest and eight second-nearest Si atoms, respectively. The spin Hamiltonian parameters of this Cr⁵⁺ center provide further support for the location of the two Cr³⁺ centers at the Si site.

Keywords: Stishovite, single-crystal EPR, ⁵³Cr hyperfine, ²⁹Si and ¹H superhyperfine, site occupancy, local structure, substitution mechanism, periodic DFT calculations