Crystal structure of hydrous wadsleyite with 2.8% H₂O and compressibility to 60 GPa

YU YE,^{1,*} JOSEPH R. SMYTH,² ANWAR HUSHUR,³ MURLI H. MANGHNANI,³ DAYANA LONAPPAN,³ PRZEMYSLAW DERA,⁴ AND DANIEL J. FROST⁵

¹Department of Physics, University of Colorado, Boulder, Colorado 80309, U.S.A.
²Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A.
³Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.
⁴Center for Advanced Radiation Sources, University of Chicago, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
⁵Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth D95440, Germany

ABSTRACT

Hydrous wadsleyite (β -Mg₂SiO₄) with 2.8 wt% water content has been synthesized at 15 GPa and 1250 °C in a multi-anvil press. The unit-cell parameters are: a = 5.6686(8), b = 11.569(1), c = 8.2449(9) Å, $\beta = 90.14(1)^\circ$, and V = 540.7(1) Å³, and the space group is *I*2/*m*. The structure was refined in space groups *Imma* and *I*2/*m*. The room-pressure structure differs from that of anhydrous wadsleyite principally in the increased cation distances around O1, the non-silicate oxygen. The compression of a single crystal of this wadsleyite was measured up to 61.3(7) GPa at room temperature in a diamond anvil cell with neon as pressure medium by X-ray diffraction at Sector 13 at the Advanced Photon Source, Argonne National Laboratory. The experimental pressure range was far beyond the wadsleyite-ringwoodite phase-transition pressure at 525 km depth (17.5 GPa), while a third-order Birch-Murnaghan equation of state (EoS) [$V_0 = 542.7(8)$ Å³, $K_{T0} = 137(5)$ GPa, K' = 4.6(3)] still fits the data well. In comparison, the second-order fit gives $V_0 = 542.7(8)$ Å³, $K_T = 147(2)$ GPa. The relation between isothermal bulk modulus of hydrous wadsleyite K_{T0} and water content $C_{H_{20}}$ is: $K_{T0} = 171(1)-12(1) C_{H_{20}}$ (up to 2.8 wt% water). The axial-compressibility β_c is larger than both β_a and β_b , consistent with previous studies and analogous to the largest coefficient of thermal expansion along the *c*-axis.

Keywords: Compressibility, hydrous wadsleyite, neon, orthorhombic