Volume behavior of the 10 Å phase at high pressures and temperatures, with implications for H₂O content

ALISON R. PAWLEY,^{1,*} MARK D. WELCH,² ALISTAIR R. LENNIE,^{3,†} AND RAYMOND L. JONES³

¹School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K. ²Department of Mineralogy, The Natural History Museum, London SW7 5BD, U.K. ³Daresbury Laboratory, Daresbury, Cheshire WA4 4AD, U.K.

ABSTRACT

The 10 Å phase is a high-pressure hydrous magnesium silicate whose composition appears to depend on synthesis conditions. We have measured the compressibility to 10.5 GPa and thermal expansivity to 400 °C of samples of 10 Å phase synthesized in long experiments (400 and 169 h, respectively) designed to maximize compositional equilibrium. The structure was refined using a metrically trigonal unit cell. Compression is highly anisotropic, especially over the first 2 GPa of compression, indicating weak bonding across the interlayer. There is an inflection in the compression curve of c at 8 GPa, suggesting a change in compression mechanism or the onset of non-hydrostaticity in the pressure medium. Fitting the compression data collected below 8 GPa to a Murnaghan equation-of-state gives $V_0 = 734.8(7)$ Å³, $K_0 = 25(1)$ GPa, K' = 18(1). Thermal expansion is also strongly anisotropic: coefficients for data up to 200 °C are $\alpha_{\alpha} = 0.15(5) \times 10^{-5} \text{ K}^{-1}$, $\alpha_{c} = 3.1(2) \times 10^{-5} \text{ K}^{-1}$, $\alpha_{V} = 3.4(2) \times 10^{-5}$ K^{-1} . Above 200 °C, the expansivity of c decreased, and all parameters showed a contraction after the experiment, suggesting partial dehydration at high temperatures. Comparison of our compressibility data with those of previous studies suggests that 10 Å phase synthesized in short experiments does not retain all of its interlayer H₂O during quenching and decompression. In contrast, samples annealed for many hours at high pressure and temperature are stabilized by small amounts of hydrogarnet-type substitution and consequent hydrogen bond strengthening.

Keywords: 10 Å phase, equation of state, compressibility, expansivity