Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California: A detailed investigation

ANDREAS ERTL,^{1,*} GEORGE R. ROSSMAN,² JOHN M. HUGHES,³ DAVID LONDON,⁴ YING WANG,² JULIE A. O'LEARY,^{2,}† M. DARBY DYAR,⁵ STEFAN PROWATKE,⁶ THOMAS LUDWIG,⁶ AND EKKEHART TILLMANNS¹

¹Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, 1090 Wien, Austria ²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125-2500, U.S.A.

³Office of the Provost, University of Vermont, 348B Waterman Building, Burlington, Vermont 05405, U.S.A

⁴ConocoPhillips School of Geology and Geophysics, University of Oklahoma, 100 East Boyd Street,

Room 810 SEC, Norman, Oklahoma 73019, U.S.A

⁵Department of Geography and Geology, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A ⁶Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany

ABSTRACT

Chemical, structural, infrared, optical, and Mössbauer spectroscopic data were obtained on tourmalines from gem pockets in the Himalaya mine, San Diego County, California, including a strongly color-zoned crystal. Calcium and Li abundances increase from core to rim, whereas Mn²⁺ and F increase, reach a maximum, and then decrease. Upon initiation of crystallization of lepidolite, F contents in tourmaline decrease. The black core is a Mn-bearing "oxy-schorl." The gravish-yellow, intermediate zone is Mn-rich "fluor-elbaite" that contains a relatively high Mn content with ~6 wt% MnO. The nearly colorless "fluor-elbaite" rim has the highest Li content of all zones. There is an inverse correlation between the lattice parameter a (for values ≥ 15.84 Å) and the Li content ($r^2 =$ 0.96). Mössbauer studies from the different zones within this crystal show that the Fe³⁺/Fe(total) ratio increases continuously from the Fe-rich core to the Fe-poor near-rim zone, consistent with increasing oxygen fugacity during pegmatite pocket evolution. There is a high positive correlation between lattice parameter a (for values ≥ 15.84 Å) and (Fe²⁺+Mn²⁺) content in tourmalines from the elbaite-schorl series ($r^2 = 0.99$). Values lower than 15.84 Å for a are likely a consequence of greater ^[4]B contents in samples that usually have a (Fe²⁺+Mn²⁺) content of < 0.1 apfu. Positive correlations between Al at the Y site and ^[4]B ($r^2 = 0.93$), and between (Mn²⁺+Fe²⁺) and ^[4]Al ($r^2 = 0.99$) were found in tournalines from the Himalaya Mine. These correlations indicate that, in the short-range order configurations, ^YAl is coupled with [4]B, whereas Mn²⁺ and Fe²⁺ are coupled with [4]Al.

To obtain the most accurate OH data, different analytical methods were used: SIMS, hydrogen manometry, continuous-flow mass spectrometry, and IR overtone spectroscopy. Some elbaites contain a mixed occupation of F, OH, and O at the W site. Based on these data, the assumption OH = 4 - F appears to be valid only for elbaitic tournalines with FeO+MnO < 8 wt%.

In terms of the conditions of formation, whether gel or glass, the transition from low to high viscosity of the pocket-forming medium occurs before primary crystallization within the pockets ceased. At the pocket stage, Li contents of residual hydrosilicate melt were evidently high enough to promote a continuous transition from schorl-foitite at the pegmatite margin to elbaite-rossmanite-liddicoatite in the final stages of consolidation of the pegmatite interior.

Keywords: Tourmaline, elbaite, schorl, crystal structure, Himalaya Mine, Mesa Grande, spectroscopy