X-ray Rietveld and ⁵⁷Fe Mössbauer studies of epidote and piemontite on the join Ca₂Al₂Fe³⁺Si₃O₁₂(OH)–Ca₂Al₂Mn³⁺Si₃O₁₂(OH) formed by hydrothermal synthesis

MARIKO NAGASHIMA^{1,2,*} AND MASAHIDE AKASAKA¹

¹Department of Geoscience, Faculty of Science and Engineering, Shimane University, Matsue 690-8504, Japan ²Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

ABSTRACT

Fe³⁺ and Mn³⁺ distributions on octahedral M1, M2, and M3 sites in synthetic epidote/piemontite from Ca₂Al₂Fe³⁺_qMn³⁺_{1-q}Si₃O_{12.5} starting material and their effects on the crystal structure were investigated using X-ray Rietveld and ⁵⁷Fe Mössbauer methods. Epidote and piemontite were crystallized as almost single phases from q = 1.0, 0.75, 0.5, and 0.25 starting materials at P_{fluid} of 200–400 MPa and a temperature of 500 °C, using standard cold-seal pressure vessels. The Mn₂O₃-MnO₂ buffer was used to produce f_{O2} adequate to maintain Fe³⁺ and Mn³⁺. The Rietveld refinements converged to goodness-of-fit ranges from 1.21 to 1.60.

At this temperature, site preferences of $\Sigma(Fe^{3+}+Mn^{3+})$ for octahedral sites are M3>M1(>>M2). K_D values of $\Sigma(Fe^{3+}+Mn^{3+})$, where $K_D = [(Fe^{3+}+Mn^{3+})/A1]^{M1}/[(Fe^{3+}+Mn^{3+})/A1]^{M3}$, (0.05–0.13) are similar to those of individual Mn³⁺ and Fe³⁺ vs. Al³⁺, respectively. However, the K_D values of Fe³⁺ and Mn³⁺ for M1 and M3, where $K_D = (Fe^{3+}/Mn^{3+})^{M1}/(Fe^{3+}/Mn^{3+})^{M3}$, vary with Fe^{3+}_{Total} . In epidote with Fe³⁺ content larger than 0.4 atoms per formula unit (apfu) and Mn³⁺ < 0.6 apfu, Fe³⁺ has a stronger preference for M1 than Mn³⁺. In piemontite with 0.12 Fe³⁺ and 0.73–0.78 Mn³⁺ apfu, the preference of Mn³⁺ for M1 is greater than that of Fe³⁺. The site occupancies of individual Mn³⁺ and Fe³⁺ are governed by the individual K_D values and the Mn³⁺ and Fe³⁺ concentrations in corresponding epidote and piemontite. Variations of the unit-cell parameters indicate the combined result of linear variation due to Al \leftrightarrow Mn³⁺ substitution.

Keywords: Epidote, piemontite, synthesis, Rietveld refinement, Mössbauer spectroscopy