Optical spectroscopic study of tetrahedrally coordinated Co²⁺ in natural spinel and staurolite at different temperatures and pressures

MICHAIL N. TARAN,^{1,*} MONIKA KOCH-MÜLLER,^{2,†} AND ANNE FEENSTRA^{3,}[‡]

¹Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Science of Ukraine, Palladin Avenue, 34, 03680 Kyiv-142, Ukraine

²Deutsches GeoForschungsZentrum, Sektion 3.3, Telegrafenberg, 14473 Potsdam, Germany

ABSTRACT

Optical absorption spectra of natural Co-bearing spinel and staurolite were studied at different temperatures and pressures. In both minerals, two broad, intense structured bands in the range 5500–8000 and 15 000–19 000 cm⁻¹, caused by electronic spin-allowed transitions ${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}F)$ and ${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}P)$ of ${}^{IV}Co^{2+}$ are the predominant absorption features. In addition, in both cases broad bands, derived from spin-allowed electronic transitions ${}^{4}E \rightarrow {}^{4}T_{2}$ of ${}^{IV}Fe^{2+}$, appear in the near infrared range partly overlapping the bands caused by ${}^{IV}Co^{2+}$. In staurolite the NIR range of the spectra are complicated by intense sharp lines of OH-vibrations at around 3400 cm⁻¹.

In spinel, with a regular tetrahedral site, the splitting of the spin-allowed bands I and II of ^{IV}Co²⁺ is assumed to be caused by spin-orbit and vibronic coupling. In staurolite, the splitting is stronger due to the additional low-symmetry crystal field effect of ^{IV}Co²⁺. It is found that the effect of temperature and pressure on the behavior of the ${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}P)$ bands of ^{IV}Co²⁺ in the two minerals are rather similar, in contrast to our findings for the spin-allowed bands of ^{IV}Fe²⁺ in spinel and staurolite. This is interpreted as a manifestation of a dynamic Jahn-Teller effect for ^{IV}Fe²⁺ and lack of it in case of ^{IV}Co²⁺.

Keywords: Spinel, staurolite, tetrahedral coordination, Co²⁺, optical absorption spectra, temperature and pressure effects