Solid-state NMR and IR spectroscopic investigation of the role of structural water and F in carbonate-rich fluorapatite

HARRIS E. MASON,^{1,2,*} FRANCIS M. MCCUBBIN,¹ ALEXANDER SMIRNOV,^{3,†} AND BRIAN L. PHILLIPS^{1,2}

¹Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, U.S.A. ²Center for Environmental Molecular Science, State University of New York, Stony Brook, New York 11794-2100, U.S.A. ³Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road N.W., Washington, D.C. 20015, U.S.A.

ABSTRACT

We have studied the substitutions in a natural well-crystallized carbonate-containing apatite-(CaF) (var. staffelite) using infrared (IR) and solid-state nuclear magnetic resonance (NMR) spectroscopic techniques. Our results show the presence of both A- and B-type carbonate plus a large amount of structural water (0.44 pfu). This sample also contains 0.21 pfu excess F, but only weak C-F dipolar coupling is observed indicating that a tetrahedral CO₃F³⁻ complex does not occur. ¹⁹F NMR results indicate the presence of a second F environment in the apatite structure at a concentration similar to that of B-type carbonate but which does not differ from channel F in terms of coupling to ³¹P or ¹H. **Keywords:** Apatite-(CaF), IR spectroscopy, NMR spectroscopy