LETTER

Determination of the crystal structure of sanderite, MgSO₄·2H₂O, by X-ray powder diffraction and the charge flipping method

HONGWEI MA,^{1,*} DAVID L. BISH,¹ HSIU-WEN WANG,¹ AND STEVE J. CHIPERA²

¹Department of Geological Sciences, Indiana University, 1001 East 10th Street, Bloomington, Indiana 47405, U.S.A. ²Chesapeake Energy Corporation, 6100 N. Western Avenue, Oklahoma City, Oklahoma 73118, U.S.A.

ABSTRACT

The crystal structure of sanderite, MgSO₄·2H₂O, was determined from laboratory X-ray powder diffraction data measured from 2–140 °20 using CuK α radiation. Sanderite is orthorhombic, space group *P*2₁2₁2₁, with unit-cell parameters *a* = 8.8932(1) Å, *b* = 8.4881(1) Å, *c* = 12.4401(2) Å, *V* = 939.16(3) Å³, *Z* = 8. The crystal structure model was determined using the charge flipping method and was refined using fundamental parameters Rietveld refinement method to *R*_{wp} = 6.52%, *R*_{exp} = 1.89%, and χ^2 = 3.43. Bond-valence calculations for the refined model show that the structure is chemically reasonable. In the refined structure, Mg²⁺ cations are coordinated by four O atoms from [SO₄]²⁻ groups and by two H₂O molecules, forming distorted octahedra. By sharing vertex O atoms, [SO₄] tetrahedra and [MgO₄(H₂O)₂] octahedra build up a 3-D framework.

Keywords: Sanderite, MgSO₄·2H₂O, crystal structure, charge flipping, structure determination, powder diffraction