American Mineralogist, Volume 93, pages 1858–1864, 2008

Bacterially enhanced dissolution of meta-autunite

CHRISTINA M. SMEATON,¹ CHRISTOPHER G. WEISENER,¹ PETER C. BURNS,² BRIAN J. FRYER,¹ AND DAVID A. FOWLE^{3,*}

¹Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada ²Department of Civil Engineering and Geological Sciences, University of Notre Dame, South Bend, Indiana 46556-0767, U.S.A. ³Department of Geology, University of Kansas, Lawrence, Kansas 66047, U.S.A.

ABSTRACT

The release of U from the mineral meta-autunite $\{Ca[(UO_2)(PO_2)](H_2O)_6\}$ was evaluated using spectroscopy, aqueous geochemistry, and electron microscopy in a minimal media with the dissimilatory metal-reducing bacterium *Shewanella putrefaciens* 200R. The onset of anaerobic conditions resulted in the rapid release of U and phosphate to solution followed by the reprecipitation of meta-autinite. Spectroscopy measurements (XANES) indicated that the U was not released via reduction during the bacterial incubations, but instead dissolution was promoted by uptake and immobilization of P by the bacterial cells. Our results suggest that U(VI) in "refractory" P mineral phases may be mobilized from U mill tailings and/or U disposal sites and that the nutrient status (P) of the geologic setting may be a predictor for the lability of U in these environments.

Keywords: Uranium, autunite, phosphate, Shewanella putrefaciens, weathering, XANES