American Mineralogist, Volume 93, pages 800-805, 2008

Structural relaxation around substitutional Cr³⁺ in pyrope garnet

AMÉLIE JUHIN,^{1,*} GEORGES CALAS,¹ DELPHINE CABARET,¹ LAURENCE GALOISY,¹ AND JEAN-LOUIS HAZEMANN²

¹Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), UMR CNRS 7590 Université Paris VI, Université Paris VII, IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France

²Institut Néel, CNRS—Université Joseph Fourier, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France

ABSTRACT

The structural environment of substitutional Cr^{3+} ion in a natural pyrope Mg₃Al₂Si₃O₁₂ has been investigated by Cr *K*-edge extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) coupled with first-principles computations. The Cr-O distance is close to that in knorringite Mg₃Cr₂Si₃O₁₂, indicating a nearly full relaxation of the first neighbors. The local C_{3i} symmetry of the octahedral Y site is retained during Cr-Al substitution. The second and third shells of neighbors (Mg and Si) relax only partially. Site relaxation is accommodated by strain-induced bond buckling, with angular tilts of the Si-centered tetrahedra around the Cr-centered octahedron, and by a deformation of the Mg-centered dodecahedra.

Keywords: Cr-pyrope, relaxation, XAS, ab initio, trace elements and REE, chromium, crystal structure, garnet, quantum mechanical calculations