Dehydrogenation of kaersutitic amphibole under electron beam excitation recorded by changes in Fe³⁺/ Σ Fe: An EMP and SIMS study

C. WAGNER,^{1,*} E. DELOULE,² M. FIALIN,³ AND P.L. KING^{4,†}

¹Laboratoire de Pétrologie, Modélisation des Matériaux et Processus, UPMC, CNRS-UMR 7160, 4 Place Jussieu, 75252 Paris Cedex 05, France
²CRPG, CNRS-UPR 2300, BP20, 54501 Vandoeuvre-lès-Nancy, France
³Centre de Microanalyse Camparis, UPMC, CNRS-UMR 70974 Place Jussieu, 75252 Paris Cedex 05, France
⁴Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada

ABSTRACT

We present in situ microanalyses of Fe³⁺/ Σ Fe in mantle-derived kaersutites as measured by electron probe microanalysis (EMP) based on the "self absorption induced FeL α peak shift" method. The EMP results are not in agreement with bulk (wet chemistry) data. The heterogeneities revealed for some kaersutite megacrysts, when comparing bulk and EMP Fe³⁺/ Σ Fe results, cannot explain the differences with the EMP measurements. It is thus proposed that any EMP overestimation of Fe³⁺/ Σ Fe results from a beam-induced dehydrogenation and a subsequent oxidation of Fe³⁺ to Fe³⁺ according to the known relation: Fe²⁺ + OH⁻ = Fe³⁺ + O²⁻ + 1/2 H₂. To demonstrate this phenomenon, H losses were measured by secondary ion mass spectrometry (SIMS) after EMP irradiation at different beam currents on two amphiboles with 1.1 and 1.7 wt% H₂O, respectively. In both amphiboles, H losses were observed under high beam currents (240 and 100 nA). No dehydrogenation is observed under lower beam currents for the 1.1 wt% H₂O amphibole, but still occurs, down to at least 50 nA, for the amphibole with the greatest H₂O contents. Amphiboles with higher H₂O contents, the electron beam current density should be reduced with consideration given to the resulting high statistical errors.

Keywords: $Fe^{3+}/\Sigma Fe$, EMP and SIMS measurements, amphibole, H loss