Equation of state and crystal structure of a new germanate post-titanite phase FABRIZIO NESTOLA,^{1,2,*} PÉTER NÉMETH,^{3,4} ROSS J. ANGEL,⁵ AND PETER R. BUSECK^{4,6}

¹Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, I-35137, Padova, Italy ²CNR-IGG, Sezione di Padova, Via Giotto 1, I-35137, Padova, Italy

³Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025, Budapest, Hungary

⁴School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404, U.S.A.

⁵Virginia Tech Crystallography Laboratory, Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A.

⁶Department of Chemistry/Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A.

ABSTRACT

The compressibility and crystal structure of a recently discovered post-titanite phase of $CaGe_2O_5$ was investigated by single-crystal X-ray diffraction to 8.6 GPa at room temperature in a diamondanvil cell. Unit-cell parameters decrease non-linearly with increasing pressure and do not show any discontinuity in the pressure range investigated. The unit-cell volume decreases by about 4.6% to 8.6 GPa. The *P*-*V* data were fit using a third-order Birch-Murnaghan equation of state giving the following coefficients: $V_0 = 345.65(4)$ Å³, $K_{T0} = 159(1)$ GPa, and K' = 5.0(3). A parameterized form of the same equation of state was used to obtain the axial moduli for a, b, and c. The room-pressure ratios of axial compressibility are 2.64:1.00:1.42, indicating strong compression anisotropy, with b the stiffest direction and a the most compressible one. The crystal-structure data confirm that no change in symmetry occurs at high-pressure. Most of the compression to 8.6 GPa is accommodated by the CaO_8 and GeO_5 polyhedra, with reductions in volume of 5.6 and 4.6%, respectively. The analysis of the individual bond-lengths with pressure is discussed to explain the observed strong axial anisotropy. A comparison with the closely related crystal structure of andalusite shows that the post-titanite phase is less compressible by about 10%. A further comparison with other titanite phases studied at high-pressures allows us to obtain a qualitative model capable of predicting their bulk moduli when unit-cell volume at ambient conditions is known.

Keywords: Post-titanite, single crystal, high pressure, X-ray diffraction