American Mineralogist, Volume 93, pages 1478-1480, 2008

LETTER

Identification of randomly interstratified illite/smectite with basal peak widths

IL MO KANG,^{1,*} MYUNG HUN KIM,² YUNGOO SONG,³ AND HI-SOO MOON³

¹Korea National Oil Corporation, 1588-14, Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do, 431-711, Korea ²Department of Chemistry, Yonsei University, 134, Shinchon-dong, Seodaemun-ku, Seoul, 120-749, Korea ³Department of Earth System Sciences, Yonsei University, 134, Shinchon-dong, Seodaemun-ku, Seoul, 120-749, Korea

ABSTRACT

This study formulates the following relationship for identifying randomly interstratified illite/ smectite using the integrated peak widths (β) for the first-order reflections after ethylene-glycolation (EG) and thermal dehydration (TD) treatments:

 $p_i = -\frac{\beta_{\rm EG} - 0.589\beta_{\rm TD}}{1.324\beta_{\rm TD} - 3.911}$

where p_i is the proportion of interstratified illite layers. The relationship minimizes the effect of crystallite thickness on the evaluation of p_i , which has been a critical source of error in the previous methods using peak position and intensity.

Keywords: Illite/smectite, interstratifications, peak width, crystallite thickness