High-pressure optical spectroscopy and X-ray diffraction studies on synthetic cobalt aluminum silicate garnet

MICHAIL N. TARAN,^{1,*} FABRIZIO NESTOLA,² HARUO OHASHI,³ MONIKA KOCH-MÜLLER,⁴ TONCI BALIC-ZUNIC,⁵ AND LARS ARNSKOV OLSEN⁵

¹Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Paladin Avenue 34, 03680 Kyiv-142, Ukraine
²Dipartimento di Geoscienze, Università di Padova, Corso Garibaldi 37, I-35137 Padova, Italy
³ HASHI Institute for Silicate Science, Nishinakanobu 1-9-25, Shinagawa, Tokyo 142-0054, Japan
⁴GeoForschungsZentrum, Sektion 4.1, Telegrafenberg, 14473 Potsdam, Germany
⁵Geological Institute, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark

ABSTRACT

The pressure-induced behavior of spin-allowed *dd*-bands of ^{VIII}Co²⁺ in the absorption spectra of synthetic Co₃Al₂Si₃O₁₂ garnet was studied from 10⁻⁴ to 13 GPa. The plots of the peak energy vs. pressure for the three sharpest well resolved bands at ca. 5160, 17 680, and 18 740 cm⁻¹ display small but discernible breaks in linear relations between 4 and 5 GPa. **Data from single-crystal X-ray diffraction** likewise show discontinuities in trends of CoO₈ polyhedral volume and distortion, and Co-O and Si-O bond distances over this pressure range. These effects are related to a pressure-induced phase transition from the β- to α-isostructural polymorph of Co₃Al₂Si₃O₁₂.

Keywords: High-pressure optical spectroscopy, high-pressure X-ray diffraction, cobalt-bearing garnet, phase transitions