Mineralogy and crystal structure of bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe nanoclusters containing Fe³⁺ in trigonal prismatic coordination

JOËL BRUGGER,^{1,*} NICOLAS MEISSER,² SERGEY KRIVOVICHEV,³ THOMAS ARMBRUSTER,⁴ AND GEORGES FAVREAU⁵

¹Department of Geology and Geophysics, Adelaide University, North Terrace, SA-5001 Adelaide, Australia and South Australian Museum, North Terrace, SA-5000 Adelaide, Australia

²Musée Géologique Cantonal and Laboratoire des Rayons-X, Institut de Minéralogie et Géochimie, UNIL-Anthropole, CH-1015 Lausanne-Dorigny, Switzerland

³Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia ⁴Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ⁵421 Avenue Jean Monnet, 13090 Aix-en-Provence, France

ABSTRACT

Bouazzerite, $Bi_6(Mg,Co)_{11}Fe_{14}[AsO_4]_{18}O_{12}(OH)_4(H_2O)_{86}$, is a new mineral occurring in "Filon 7" at the Bou Azzer mine, Anti-Atlas, Morocco. Bouazzerite is associated with quartz, chalcopyrite, native gold, erythrite, talmessite/roselite-beta, Cr-bearing yukonite, alumopharmacosiderite, powellite, and a blue-green earthy copper arsenate related to geminite. The mineral results from the weathering of a Variscan hydrothermal As-Co-Ni-Ag-Au vein. The Bou Azzer mine and the similarly named district have produced many outstanding mineral specimens, including the world's best erythrite and roselite.

Bouazzerite forms monoclinic prismatic {021} crystals up to 0.5 mm in length. It has a pale apple green color, a colorless streak, and is translucent with adamantine luster. d_{calc} is 2.81(2) g/cm³ (from X-ray structure refinement). The new mineral is biaxial with very weak pleochroism from yellow to pale yellow; the refractive indices measured on the (021) cleavage face range from $n_{min} = 1.657$ to $n_{max} = 1.660$; the Gladstone-Dale relationship provides a value of 1.65. The empirical chemical formula is Bi_{6.14}Fe_{12.6}Mg_{8.45}Co_{0.48}Ni_{0.12}Ca_{0.23}(As_{17.0}Cr_{0.64}Si_{0.32})_{$\Sigma=18.0$}O_{174.6}H₁₈₄. Bouazzerite is monoclinic, $P2_1/n$, Z = 2, with a = 13.6322(13) Å, b = 30.469(3) Å, c = 18.4671(18) Å, $\beta = 91.134(2)^\circ$, and V = 7669.0(13) Å³. The eight strongest lines in the X-ray powder diffraction pattern are [*d* in Å (*I*)(*hkl*)]: 11.79(100)(021), 10.98(80)(101/101), 10.16(80)(120), 7.900(80)(022), 12.45(70)(110), 15.78(60)(011), 3.414(40)(333/400), 3.153(40)(353/225).

The crystal structure of bouazzerite is based upon $[Bi_3Fe_7O_6(OH)_2(AsO_4)_9]^{11-}$ anionic nanoclusters that are built around $[^{trigonal prismatic}Fe_3^{3+}(octahedral Fe_3^{3+}(OH)O_{12})_2]^{29-}$ groups, containing one Fe_3^{3+} ion in trigonal prismatic coordination and six Fe_3^{3+} ions in octahedral coordination. The nanoclusters have a diameter of about 1.3 nm and are linked together by chains of Mg(O,H₂O)₆ octahedra. The resulting arrangement displays channels down [100] that contain structural water. Bouazzerite is the first mineral based upon Bi- and As-containing ferric nanoclusters. Its discovery provides a unique insight into transport mechanisms of toxic elements in the oxidation zones of sulfide mineral deposits in the form of complex Fe-As nanoparticles.

Keywords: Bouazzerite, new mineral, crystal structure determination, trigonal prismatic coordination, Bou Azzer province, Anti-Atlas, Morocco