High-pressure structure and bonding in CaIrO₃: The structure model of MgSiO₃ post-perovskite investigated with time-of-flight neutron powder diffraction

C. DAVID MARTIN,^{1,*} RONALD I. SMITH,² WILLIAM G. MARSHALL,² AND JOHN B. PARISE^{1,3}

¹Geosciences Department, 255 Earth and Space Sciences Building, Stony Brook University, Stony Brook, New York 11794-2100, U.S.A. ²ISIS Neutron Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, U.K. ³Chemistry Department, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A.

ABSTRACT

The structure of CaIrO₃ (*Cmcm*) has been refined at high pressure and at low temperature using time-of-flight neutron powder diffraction data. Evidence supporting deviation from space group *Cmcm* to *Cmc2*₁ is inconclusive. As CaIrO₃ (*Cmcm*) unit-cell volume changes, refinements indicate deformation of cation-centered coordination polyhedra, rather than tilting. Structure models demonstrate Ca²⁺-centered polyhedra are an order of magnitude more compressible than Ir⁴⁺-centered octahedra. Bond valence sums show significant chemical strain (over-bonding) of calcium and oxygen at ambient conditions. Implications for structure change in MgSiO₃ post-perovskite are discussed and a method for predicting the Clapeyron slope between perovskite and post-perovskite phases is proposed based on extrapolation of the volume-ratio between cation-centered polyhedra.

Keywords: Post-perovskite, high pressure, structure, neutron diffraction, Rietveld refinement, bond valence, D" layer, CaIrO₃