TEM investigation of Ca-rich plagioclase: Structural fluctuations related to the *I*T-*P*T phase transition

PÉTER NÉMETH,^{1,2} MARIO TRIBAUDINO,³ EMILIANO BRUNO,⁴ AND PETER R. BUSECK^{1,2,*}

¹School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404, U.S.A.
²Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A.
³Dipartimento di Scienze della Terra, Università di Parma, Parco Area delle Scienze 157/A, Parma, 43100, Italy
⁴Dipartimento di Scienze Mineralogiche e Petrologiche, Università di Torino, Via Valperga Caluso 35, Torino, 10125, Italy

ABSTRACT

We used transmission electron microscopy (TEM) to understand microstructural changes accompanying the reversible $I\overline{1}$ - $P\overline{1}$ phase transition in Ca-rich plagioclase as a function of Na content. The transition produces *c*- and *d*-type domains that have $P\overline{1}$ symmetries, and the symmetries of domain walls are $I\overline{1}$. Based on diffractograms and contrast differences of high-resolution TEM (HRTEM) images, we infer that structural differences occur on a scale of tens of nanometers, giving rise to structural fluctuations. These variations can be followed on a nanometer scale using HRTEM images. We propose a model with a body-centered Al-Si framework and single Ca sites for the $I\overline{1}$ domains. The $P\overline{1}$ domains of anorthite with high Al-Si ordering are homogeneous. In contrast, structural fluctuations occur in both anorthite with lower Al-Si ordering and in Na-bearing plagioclase. The magnitudes of the fluctuations decrease with increases in Na content.

Keywords: 11-P1 phase transition, Ca-rich plagioclase, HRTEM, structural fluctuations