American Mineralogist, Volume 92, pages 670-674, 2007

The effect of H₂O on olivine crystallization in MORB: Experimental calibration at 200 MPa

RENAT R. ALMEEV,^{1,*} FRANÇOIS HOLTZ,¹ JÜRGEN KOEPKE,¹ FLEURICE PARAT,² AND ROMAN E. BOTCHARNIKOV¹

¹Institut für Mineralogy, Universität Hannover, Callinstrasse 3, Hannover, 30167, Germany ²Mineralogisches Institut, Im Neuenheimer Feld 236, Heidelberg, 69120, Germany

ABSTRACT

Crystallization experiments were conducted at 200 MPa and water-undersaturated conditions to quantify the effect of small amounts of H₂O on the crystallization temperature of olivine in basaltic melts (e.g., Mid-Oceanic Ridge Basalts, MORB). The H₂O concentrations in the quenched glasses, determined by infrared spectroscopy and Karl-Fischer-Titration, ranged between 0.25 and 4.2 wt% H₂O. The dry liquidus temperature was estimated from experiments at 0.1 MPa (H₂O-free) and from the known pressure dependence of olivine crystallization temperature. The liquidus temperature depression can be predicted by the empirical equation (T^{DRY} – T^{WET}) = 39.69 ·C_{H₂O^{0.73}(wt%). The comparison of the experimental results with available crystallization models and empirical methods shows that most of the predicted liquidus temperature depressions differ significantly from that observed in this study. **Keywords:** Crystallization, H₂O, MORB, olivine, liquidus, FTIR, KFT}