Valence state partitioning of vanadium between olivine-liquid: Estimates of the oxygen fugacity of Y980459 and application to other olivine-phyric martian basalts

C.K. SHEARER,^{1,*} G. MCKAY,² J.J. PAPIKE,¹ AND J.M. KARNER¹

¹Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ²Johnson Space Center, Houston, Texas 77058, U.S.A.

ABSTRACT

The valence state of vanadium (V²⁺, V³⁺, V⁴⁺, and V⁵⁺) is highly sensitive to variations in redox conditions of basaltic magmas. Differences in valence state will influence its partitioning behavior between minerals and basaltic liquid. Using partitioning behavior of V between olivine and basaltic liquid precisely calibrated for martian basalts, we determined the oxidation state of a primitive (ol-ivine-rich, high Mg no.) martian basalt (Y980459) near its liquidus. The behavior of V in the olivine from other martian olivine-phyric basalts (SaU005, DaG476, and NWA1110) was documented. The combination of oxidation state and incompatible-element characteristics determined from early olivine indicates that correlations among geochemical characteristics such as f_{0_2} , LREE/HREE, initial ⁸⁷Sr/⁸⁶Sr, and initial ε_{Nd} observed in many martian basalts is also a fundamental characteristic of these primitive magmas. These observations are interpreted as indicating that the mantle sources for these magmas have a limited variation in f_{0_2} from IW to IW+1 and are incompatible-element depleted. Moreover, these mantle-derived magmas assimilated a more oxidizing (>IW+3), incompatible-element enriched, lower-crustal component as they ponded at the base of the martian crust.

Keywords: Shergottite, olivine, vanadium, valence state partitioning