Assignment of infrared OH-stretching bands in calcic amphiboles through deuteration and heat treatment

KIYOTAKA ISHIDA^{1,*} AND FRANK C. HAWTHORNE²

¹Department of Environmental Changes, Graduate School of Social and Cultural Studies, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560, Japan

²Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

ABSTRACT

Infrared OH-stretching bands of calcic amphiboles in the magnesiohornblende-tschermakite/ferrotschermakite and edenite-pargasite/hastingsite series have been assigned by deuteration and heat treatment in air. Mössbauer spectra indicate that with increasing temperature for heat-treatment in air, Fe^{2+} at the M1 and M3 sites is first converted to Fe^{3+} through dehydrogenation, and then Fe^{2+} at the M2 site is oxidized at higher temperature. The quadrupole-splitting parameters of (oxidized) Fe^{3+} at the M1 and M3 sites and Fe^{3+} at the M2 site are much larger than in natural (= non-dehydrogenated) amphiboles, indicating that dehydrogenation of O3H causes large electric-field-gradients at the M1-3 sites. The intensity of absorption of Fe³⁺ at M2 decreases with heating temperature, which is consistent with the migration of Fe³⁺ at M2 to the M1 and/or M3 sites. The (MgMgAl)-OH band, designated K_{T}^* , occurs at ~3678 cm⁻¹ in Fe²⁺-poor pargasitic amphiboles, and is assigned to the configuration (MgMgAl)-OH-^A(Na,K): ^{T1}Si^{T1}Al. Three (2–4) of the following four types of band systems occur with decreasing band frequency: (1) A^*-D^* bands at 3730–3675 cm⁻¹, associated with (M1M1M3)-OH-^A(Na,K):^{T1}Si^{T1}Si configurations; (2) A*_T-D*_T bands at 3725-3650 cm⁻¹, associated with (M1M1M3)-OH-^A(Na,K): ^{T1}Si^{T1}Al configurations; (3) A–D bands at 3680–3620 cm⁻¹, associated with (M1M1M3)-OH-^A \Box : ^{T1}Si^{T1}Si (\Box = vacancy) configurations; and (4) A₁–D₁ bands at 3650–3580 cm⁻¹, associated with (M1M1M3)-OH-^A: ^{T1}Si^{T1}Al configurations. In addition, A**_T, E*_T, and K**_T bands ascribed to the configurations (MgMgMg)-OH-^A(Na,K)-⁰³O²⁻:^{T1}Si^{T1}Al, (MgMgFe³⁺)-OH-^A(Na,K)-^{O3}O²⁻:^{T1}Si^{T1}Al, and (MgMgAl)-OH-^A(Na,K)-^{O3}O²⁻:^{T1}Si^{T1}Al are important constituents of the spectra of oxidized magnesiohornblende and pargasite. The high frequency bands, A*-D*, are particularly weak, indicating short-range order involving local association of the ^{T1}Si^{T1}Al configuration with a locally occupied A-site.

Keywords: Infrared OH-stretching spectra, tetrahedral Al, calcic amphibole, pargasite, deuteration, heat-treatment