Sound velocities and elastic constants of ZnAl₂O₄ spinel and implications for spinel-elasticity systematics

HANS J. REICHMANN^{1,*} AND STEVEN D. JACOBSEN^{2,†}

¹Geoforschungszentrum Potsdam, Section 4.1, Telegrafenberg, 14473 Potsdam, Germany ²Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A.

ABSTRACT

The pressure dependence of the sound velocities, single-crystal elastic constants, and shear and adiabatic bulk moduli of a natural gahnite (ZnAl₂O₄) spinel have been determined to ~9 GPa by gigahertz ultrasonic interferometry in a diamond anvil cell. The elastic constants of gahnite are (in GPa): $C_{11} = 290(3)$, $C_{12} = 169(4)$, and $C_{44} = 146(2)$. The elastic constants C_{11} and C_{12} have similar pressure derivatives of 4.48(10) and 5.0(8), while the pressure derivative of C_{44} is 1.47(3). In contrast to magnetite, gahnite does not exhibit C_{44} mode softening over the experimental pressure range. The adiabatic bulk modulus K_{50} is 209(5) GPa, with pressure derivative $K'_{5} = 4.8(3)$, and the shear modulus $G_{0} = 104(3)$ GPa, with G' = 0.5(2). Gahnite, along with chromite (FeCr₂O₄) and hercynite (FeAl₂O₄) are the least compressible of the naturally occurring oxide spinels. Evaluation of Birch's Law for isostructural minerals indicates that spinels containing transition metals on both the ^[4]A and ^[6]B sites follow a trend about five times more negative than oxide and silicate-spinel phases without any, or only one transition metal.

Keywords: Spinel, sound wave velocities, elastic properties, Birch's Law