Oxy-amphibole equilibria in Ti-bearing calcic amphiboles: Experimental investigation and petrologic implications for mantle-derived amphiboles

ROBERT K. POPP,^{1,*} HEATHER A. HIBBERT,² AND WILLIAM M. LAMB¹

¹Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843, U.S.A. ²5502 Morgan Hill Ext., South Woodstock, Vermont 05071, U.S.A.

ABSTRACT

An experimental study was carried out to investigate the equilibrium between Fe oxy-component and hydroxy-component in Ti-bearing calcic amphiboles, as described in the dehydrogenation/oxidation reaction

$$Fe^{2+} + OH^{-} = Fe^{3+} + O^{2-} + 1/2 H_2,$$

for which the equilibrium constant (K) can be expressed as

$$K = f_{\rm H_2}(28.94) \frac{(X_{\rm Fe^{3+}})^2 (X_{\Box})^2}{(X_{\rm Fe^{2+}})^2 (X_{\rm OH})^2} \cdot \Phi = K_{\rm x} \cdot \Phi \ .$$

where \Box = H-vacancy on the O3 anion position, Φ is the activity coefficient term, and K_x represents the thermodynamic mole fraction term (i.e., the *K* expressed as mole fractions rather than activities).

The variation in K_x was quantified experimentally by annealing experiments on amphiboles of two different compositions: a mantle-derived kaersutite from Greenland, and a crustal pargasite from the Tschicoma Formation from the Jemez Mountains, New Mexico, volcanic complex. The conditions of the experiments ranged from 700–1000 °C, 1–10 kbar, and $f_{\rm H_2}$ from that of the HM to GM solid buffer assemblages. The results, combined with similar data for a titanian pargasite from Vulcan's Throne, Arizona (Popp et al. 1995a), define the variation in log K_x as a function of T, P, and amphibole composition as given by the equation:

$$\log K_{\rm X} = 4.23 - \frac{4380}{T(K)} + \left\{ 1.37 \cdot \left[\left({\rm Ti} + {\rm Al}_{\rm total} {\rm apfu} \right) - 2.49 \right] \right\} + \left\{ \frac{88}{T(K)} \cdot \left[P - 1 \left({\rm kbar} \right) \right] \right\}$$

If the *T*, *P*, and amphibole composition are known, values of log K_x calculated from the equation predict the equilibrium $\log f_{H_2}$ of any experiment to within ~0.1 to 0.3 log units. It is assumed that a similar uncertainty in $\log f_{H_2}$ would also to apply to the conditions of formation of natural amphiboles in the same composition range. If $\log f_{O_2}$ at the time of equilibration can be estimated independently for natural samples (e.g., mantle-derived amphiboles), the H₂O activity also can be estimated.

An alternate approach for estimating H_2O activity from amphibole-bearing mantle rocks is to use a variety of H_2O -buffering equilibria among end-member components in olivine, two-pyroxenes, amphibole, and other phases: e.g., 2 tr +2 fo = 5 en + 4 di + 2 H_2O .

A self-consistent thermodynamic database (THERMOCALC, Holland and Powell 1990) can be used to determine the $a_{\rm H_2O}$ of such univariant H₂O-buffering equilibria as a function of *P* and *T*.

A mantle amphibole assemblage from Dish Hill (sample DH101-E, McGuire et al. 1991) was used to calculate $a_{\rm H_2O}$ using the two different methods. The mean value of log $a_{\rm H_2O}$ determined from seven different dehydration reactions is -1.70, with a 1 σ range of ±0.50. That range of water activity is in good agreement with the value of log $a_{\rm H_2O}$ =-1.90 ± 0.3 obtained using the dehydrogenation/oxidation equilibrium, along with an estimate of log $f_{\rm O_2}$.

The use of xenolith amphiboles to infer values of a_{H_2O} in the mantle requires that the H content of the amphibole does not change significantly during ascent or eruption. Changes in H content have significantly different effects on the dehydration and dehydrogenation equilibria, such that, comparison of the a_{H_2O} estimates from the two different methods may permit quantification of H loss.

Keywords: Experimental petrology, amphiboles, redox, fluid phase, activity of H₂ and H₂O, phase equilibria