Phase transitions and volumetric properties of cryolite, Na₃AlF₆: Differential thermal analysis to 100 MPa

DAVID DOLEJŠ* AND DON R. BAKER

Department of Earth and Planetary Sciences, McGill University, 3450 rue University, Montreal, Quebec H3A 2A7, Canada

ABSTRACT

Cryolite, Na₃AlF₆, is the most abundant aluminofluoride mineral in highly evolved felsic suites and their pegmatites, but its phase transitions and thermodynamic properties at elevated pressures are unknown. We used a simple modification of the TZM pressure vessel to perform differential thermal analysis of cryolite at high pressures. Temperatures of the α - β transition are as follows: 559.30 \pm 0.23 $^{\circ}$ C (1 atm), 562.10 \pm 0.28 $^{\circ}$ C (47 MPa), and 567.33 \pm 0.23 $^{\circ}$ C (101 MPa). Cryolite melting temperatures increase as follows: 1011.4 ± 0.2 °C (1 atm), 1019.2 ± 0.4 °C (50 MPa), and 1028.7 ± 0.4 °C (100 MPa). Both pressure-temperature relationships are linear: $(dT/dp)_{\alpha,\beta} = 78.4 \pm 8.4$ °C/GPa and $(dT/dp)_{\alpha,\beta} = 78.4 \pm 8.4$ $dp)_m = 174 \pm 12$ °C/GPa. Application of the Clapeyron relationship leads to the following volumetric changes: $\Delta V_{\alpha-\beta} = 0.089 \pm 0.019 \text{ J/(mol·bar)}$ and $\Delta V_m = 1.49 \pm 0.12 \text{ J/(mol·bar)}$. Despite the significant self-dissociation in the cryolite liquid, melting sensu stricto (without dissociation) dominates the heat and volumetric changes during melting in comparable amounts: $83.3 \pm 6.7 \% \Delta H_m$ and $68 \pm 15 \% \Delta V_m$ and suggests that the degree of dissociation has no significant effect on the $(dT/dp)_m$. Evaluation of previous and current volumetric data for cryolite polymorphs leads to $V_{B1284} = 8.49 \pm 0.17 \text{ J/(mol·bar)};$ coefficients for the volumetric thermal expansion in the form of the third-order polynomial equation are: $V_{298} = 7.080 \pm 0.012$ J/(mol·bar), $a_1 = (1.39 \pm 0.20) \cdot 10^{-4}$ K⁻¹, $a_2 = (-2.15 \pm 0.51) \cdot 10^{-7}$ K⁻², and $a_3 = (-2.15 \pm 0.51) \cdot 10^{-7}$ K⁻². = $(2.68 \pm 0.34) \cdot 10^{-10} \text{ K}^{-3}$. The total $(dT/dp)_m$ of cryolite is very similar to that of villiaumite (NaF), whereas $\Delta V_m/V_{\beta,1284}$ of cryolite is smaller than for other alkali halides (NaF, NaCl).

Keywords: DTA, TGA, cryolite, phase transition, thermodynamics