American Mineralogist, Volume 91, pages 211-215, 2006

Complete solid-solution between Na₃Al₂(PO₄)₃ and Mg₃Al₂(SiO₄)₃ garnets at high pressure

FABRICE BRUNET,^{1,*} VINCENT BONNEAU,¹ AND TETSUO IRIFUNE²

¹Laboratoire de Géologie, CNRS-UMR8538, Ecole Normale Supérieure, Paris, France ²Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan

ABSTRACT

Syntheses along the $Mg_3Al_2(SiO_4)_3$ -Na₃Al₂(PO₄)₃ join were carried out in the 15–17 GPa range at temperatures between 1200 and 1600 °C. An Na₃Al₂(PO₄)₃ compound of garnet-like structure, with a cubic-cell parameter of 11.579(2) Å, was synthesized and characterized. Intermediate compositions are also found to crystallize in the garnet structure. Between pyrope and Na₃Al₂(PO₄)₃, the cubic unit-cell volume increases by 3.1%. In addition, nominal compositions, $Mg_{2.5}Na_{0.5}Al_2Si_{2.5}P_{0.5}O_{12}$ and $Mg_2Na_1Al_2Si_2P_1O_{12}$, were run at 3 GPa and 875 °C. They yielded garnet, among other phases, but with no significant phosphorus incorporation as indicated by a pyrope-like unit-cell volume. Phosphorus content in pyrope from the UHP Dora-Maira quartzites appears as a potential pressure indicator where UHP garnet coexists with phosphate minerals. The P-content in upper mantle garnets can be used as a probe of phosphorus activity in the host rock.

Keywords: Crystal synthesis, phosphate garnet, high-pressure studies, garnet, petrography, phosphorus in garnet, XRD data, P-Si garnet solid-solution series