American Mineralogist, Volume 91, pages 446-450, 2006

Clinopyroxene exsolution in wollastonite from Namaqualand granulite, South Africa

YUSUKE SETO,^{1,*} SHUGO OHI,¹ NORIMASA SHIMOBAYASHI,¹ MASAO KITAMURA,¹ AKIRA MIYAKE,¹ YOSHIKUNI HIROI,² AND GEOFFREY H. GRANTHAM³

¹Department of Geology and Mineralogy, Kyoto University, Kyoto, 606-8502, Japan ²Department of Earth Sciences, Chiba University, Chiba, 263-8522, Japan ³Council for Geoscience, Pretoria 0002, South Africa

ABSTRACT

Chemical and crystallographic properties of clinopyroxene exsolution in wollastonite are described from metamorphosed calc-silicate granulite, Namaqualand, South Africa. The wollastonite is Ca_{1.96}Fe_{0.01}Al_{0.01}Si_{2.01}O₆ belonging to space group $P2_1/a$ (2M polytype) and the clinopyroxene is Ca_{0.99}Mg_{0.75-0.80}Fe_{0.17-0.21}Na_{0.02}Al_{0.03}Si_{1.99-2.00}O₆ belonging to C2/c. An electron backscattered diffraction investigation suggests that the clinopyroxene lamellae elongated along [$\overline{1111}$] lie on (120) and (100) of the wollastonite-2M, and [$1\overline{10}$] of both lamellae are parallel to [001] of the wollastonite-2M. The formation of the exsolution probably results from the relatively high peak metamorphic temperature (800–860°C) of the Namaqualand granulite and its slow cooling rate.

Keywords: Wollastonite, exsolution, clinopyroxene, TEM, EBSD